Skip to main content

Advertisement

Log in

Spatial and Temporal Dynamics of Urban Heat Island and Their Relationship with Land Cover Changes in Urbanization Process: A Case Study in Suzhou, China

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

One of the significant environmental consequences of urbanization is the urban heat island (UHI). In this paper, Landsat TM images of 1986 and 2004 were utilized to study the spatial and temporal variations of heat island and their relationships with land cover changes in Suzhou, a Chinese city which experienced rapid urbanization in past decades. Land cover classifications were derived to quantify urban expansions and brightness temperatures were computed from the TM thermal data to express the urban thermal environment. The spatial distributions of surface temperature indicated that heat islands had been largely broadened and showed good agreements with urban expansion. Temperature statistics of main land cover types showed that built-up and bare land had higher surface temperatures than natural land covers, implying the warming effect caused by the urbanization with natural landscape being replaced by urban areas. In addition, the spatial detail distributions of surface temperature were compared with the distribution of land cover by means of GIS buffer analysis. Results show remarkable show good correspondence between heat island variations with urban area expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26.

    Article  Google Scholar 

  • Balling, R. C. J., & Brazel, S. W. (1988). High–resolution surface temperature patterns in a complex urban terrain. Photogrammetric Engineering and Remote Sensing, 54, 1289–1293.

    Google Scholar 

  • Chander, G., & Markham, B. (2003). Revised Landsat–5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41, 2674–2677.

    Article  Google Scholar 

  • Chen, Y., Wang, J., & Li, X. (2002). A study on urban thermal field in summer based on satellite remote sensing. Remote Sensing of Land & Resources, 4, 55–59 (in Chinese with English abstract).

    Google Scholar 

  • Chen, X., Zhao, H., Li, P., & Yin, Z. (2006). Remote sensing image–based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133–146.

    Article  Google Scholar 

  • Dash, P., Gottsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice—current trends. International Journal of Remote Sensing, 23, 2563–2594.

    Article  Google Scholar 

  • Deng, J. S., Wang, K., Hong, Y., & Qi, J. G. (2009). Spatio–temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 92, 187–198.

    Article  Google Scholar 

  • Donnay, J. P., Barnsley, M. J., & Longley, P. A. (2001). Remote sensing and urban analysis. London and New York: Taylor and Francis.

    Book  Google Scholar 

  • Dousset, B., & Gourmelon, F. (2003). Satellite multi–sensor data analysis of urban surface temperatures and landcover. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 43–54.

    Article  Google Scholar 

  • Gallo, K. P., & Owen, T. W. (1998). Assessment of urban heat island: a multisensor perspective for the Dallas–Ft. Worth, USA region. Geocarto International, 13, 35–41.

    Article  Google Scholar 

  • Gallo, K. P., McNab, A. L., Karl, T. R., Brown, J. F., Hood, J. J., & Tarpley, J. D. (1993). The use of NOAA AVHRR data for assessment of the urban heat island effect. Journal of Applied Meteorology, 32, 899–908.

    Article  Google Scholar 

  • Gallo, K. P., Tarpley, J. D., McNab, A. L., & Karl, T. R. (1995). Assessment of urban heat island: a satellite perspective. Atmospheric Research, 37, 37–43.

    Article  Google Scholar 

  • Goward, S. N. (1981). Thermal behavior of urban landscapes and the urban heat island. Physical Geography, 2, 19–33.

    Google Scholar 

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3, 610–621.

    Article  Google Scholar 

  • Hung, T., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8, 34–48.

    Article  Google Scholar 

  • Jusuf, S. K., Wong, N. H., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat International, 31, 232–242.

    Article  Google Scholar 

  • Larson, R. C., & Carnahan, W. H. (1997). The influence of surface characteristics on urban radiant temperatures. Geocarto International, 12, 5–16.

    Article  Google Scholar 

  • Lo, C. P., & Quattrochi, D. A. (2003). Land–use and land–cover change, urban heat island phenomenon, and health implications: a remote sensing approach. Photogrammetric Engineering and Remote Sensing, 69, 1053–1063.

    Google Scholar 

  • Lougeay, R., Brazel, A., & Hubble, M. (1996). Monitoring intra–urban temperature patterns and associated land cover in Phoenix, Arizona using Landsat thermal data. Geocarto International, 11, 79–89.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2006). Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment, 104, 157–167.

    Article  Google Scholar 

  • Oke, T. R. (1995). The heat island of the urban boundary layer: Characteristics, causes and effects. In J. E. Cermak, A. G. Davenport, E. J. Plate, & D. X. Viegas (Eds.), Wind climate in cities. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessment of satellite remotely – sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19, 1663–1681.

    Article  Google Scholar 

  • Pu, R., Gong, P., Michishita, R., & Sasagawa, T. (2006). Assessment of multi–resolution and multi–sensor data for urban surface temperature retrieval. Remote Sensing of Environment, 104, 211–225.

    Article  Google Scholar 

  • Qian, L., & Ding, S. (2005). Influence of land cover change on land surface temperature in Zhujiang Delta. Acta Geographica Sinica, 60, 761–770 (in Chinese with English abstract).

    Google Scholar 

  • Rao, P. K. (1972). Remote sensing of urban heat islands from an environmental satellite. Bulletin of the American Meteorological Society, 53, 647–648.

    Google Scholar 

  • Roth, M., Oke, T. R., & Emery, W. J. (1989). Satellite derived urban heat islands from three coastal cities and the utilisation of such data in urban climatology. International Journal of Remote Sensing, 10, 1699–1720.

    Article  Google Scholar 

  • Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM + and Corine land cover data: an application to major cities in Greece. Solar Energy, 81, 358–368.

    Article  Google Scholar 

  • Streutker, D. R. (2003). Satellite–measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85, 282–289.

    Article  Google Scholar 

  • Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., & Morcrette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35, 675–686.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Weng, Q. (2001). A remote sensing–GIS evaluation of urban expansion and its impact on surface temperature in Zhujiang Delta, China. International Journal of Remote Sensing, 22, 1999–2014.

    Google Scholar 

  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.

    Article  Google Scholar 

  • Wilson, J. S., Clay, M., Martin, E., Struckey, D., & Vedder-Risch, K. (2003). Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment, 86, 303–321.

    Article  Google Scholar 

  • Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104, 147–156.

    Article  Google Scholar 

  • Xiao, J. Y., Shen, Y. J., Ge, J. F., Tateishi, R., Tang, C. Y., Liang, Y. Q., et al. (2006). Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape and Urban Planning, 75, 69–80.

    Article  Google Scholar 

  • Yeh, A. G. O., & Li, X. (1999). Economic development and agricultural land loss in the Pearl River Delta, China. Habitat International, 23, 373–390.

    Article  Google Scholar 

  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375–386.

    Article  Google Scholar 

  • Zhang, Y., Odeh, I. O. A., & Han, C. (2009). Bi–temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub–pixel image analysis. nternational Journal of Applied Earth Observation and Geoinformation, 11, 256–264.

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the National Natural Science Foundation of China (Grant Number: 40801040, 40901239), Major State Basic Research Development Program of China (Grant Number: 2010CB428505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Xu.

About this article

Cite this article

Xu, Y., Qin, Z. & Wan, H. Spatial and Temporal Dynamics of Urban Heat Island and Their Relationship with Land Cover Changes in Urbanization Process: A Case Study in Suzhou, China. J Indian Soc Remote Sens 38, 654–663 (2010). https://doi.org/10.1007/s12524-011-0073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-011-0073-7

Keywords

Navigation