Skip to main content
Log in

An Adaptive Supervised Nonlinear Feature Extraction for Hyperspectral Imagery Classification

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In this paper, an improved version of locally linear Embedding is proposed. In the proposed method, spectral correlation angle is invited to describe the distance between data points, which is expected to fit the hyperspectral image (HSI). The neighborhood graph of the data points is constructed based on supervised method. Different from traditional supervised feature extraction methods, the weight factors, which are used to control the transform, are adaptively achieved. In this way, the input arguments of original algorithm are not increased. To justify the effectiveness of the proposed method, experiments are conducted on two HSIs. Results show that the proposed method can improve the separability of HSI especially in low dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

    Article  Google Scholar 

  • Comon, P. (1994). Independent component analysis: A new concept. Signal Processing, 36(3), 287–314.

    Article  Google Scholar 

  • Cox, M. A. A., & Cox, T. F. (1994). Multidimensional scaling. Journal of the Royal Statistical Society, 46(2), 1050–1057.

    Google Scholar 

  • De Carvalho, O. A., & Meneses, P. R. (2000). Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). Summaries of the 9th JPL Airborne Earth Science Workshop, 1, 65–74.

  • Du, Y., Chang, C., Ren, H., Chang, C. C., & D'Amico, F. M. (2004). New hyperspectral discrimination measure for spectral characterization. Optical Engineering, 43(8), 1777–1786.

    Article  Google Scholar 

  • Geng, X., Zhan, D. C., & Zhou, Z. H. (2005). Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man and Cybernetics Society, 35(6), 1098.

    Article  Google Scholar 

  • Huang, R. S. (2014). Information technology in an improved supervised locally linear embedding for recognizing speech emotion. Advanced Materials Research, 2014(1014), 375–378.

    Article  Google Scholar 

  • Jollife, I. T. (1986). Principal component analysis. New York: Springer.

    Book  Google Scholar 

  • Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., & Barloon, P. J. (1993). The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163.

    Article  Google Scholar 

  • Maesschalck, R. D., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 50(1), 1–18.

    Article  Google Scholar 

  • Ridder, D. D., & Duin, R. P. W. (2002). Locally Linear Embedding For Classification. Technical Report PH-2002-01, Pattern Recognition Group, Dept. of Imaging Science & Technology, Delft University of Technology, Delft, The Netherlands.

  • Robila, S. (2005). An in vestigation of spectral metrics in hyperspectral image preprocessing for classification. In Annual Conference, Baltimaore, Maryland.

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323.

    Article  Google Scholar 

  • Su, Z., Tang, B., Ma, J., & Deng, L. (2014). Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier. Measurement, 48(1), 136–148.

    Article  Google Scholar 

  • Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., & Koudas, N. (2002). Non-linear dimensionality reduction techniques for classification and visualization. In Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (pp. 645–651).

  • Wang, L., Hao, S., Wang, Y., Lin, Y., & Wang, Q. (2014). Spatial-spectral information-based semisupervised classification algorithm for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3577–3585.

    Article  Google Scholar 

  • Wang, Q., Lin, J., & Yuan, Y. (2016). Salient band selection for hyperspectral image classification via manifold ranking. IEEE Transactions on Neural Networks and Learning Systems, 27(6), 1279.

    Article  Google Scholar 

  • Yang, J. L., Tang, L. B., Song, D., & Zhao, B. J. (2015). Incremental sample dimensionality reduction and recognition based on clustering adaptively manifold learning. XI Tong Gong Cheng Yu Dian Zi Ji Shu/systems Engineering and Electronics, 37(1), 199–205.

    Google Scholar 

  • Yuan, Y., Lin, J., & Wang, Q. (2016). Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization. IEEE Transactions on Cybernetics, 46(12), 2966.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant No. 61675051), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014 k-M07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Wang, L., Li, C. et al. An Adaptive Supervised Nonlinear Feature Extraction for Hyperspectral Imagery Classification. J Indian Soc Remote Sens 46, 367–376 (2018). https://doi.org/10.1007/s12524-017-0696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-017-0696-4

Keywords

Navigation