Skip to main content

Advertisement

Log in

Energy-efficient clustering method for wireless sensor networks using modified gravitational search algorithm

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Past decades have witnessed the advancement of wireless sensor networks (WSNs) in both academic and industrial communities. Clustering is one of the most popular methods to increase the lifespan of WSNs. The optimal number of cluster heads and how to organize the clusters are the most important issues to be addressed in the clustering methods. In this paper, we proposed a novel user-independent and dynamical method to calculate the optimal number of clusters, organize the clusters, and determine the best cluster heads in each round. In this method, efficient energy consumption and link quality were considered to compute the optimal number of clusters. Then, the algorithm began to organize the compact clusters with high energy level cluster heads. We investigated a new fitness function in order to achieve these objectives. A new version of gravitational search algorithm (GSA) was used to solve this optimization problem. In this algorithm, the power distance sums scaling method was applied to calculate the mass values. Then, a fuzzy logic controller is employed to identify the parameter of this algorithm to control the exploitation and exploration abilities of the method during the computational process of the algorithm. Then, the novel version of GSA was applied to reach an appropriate solution for the fitness function, find the optimal number of clusters, and properly organize these clusters. To evaluate the effectiveness of the proposed method, several experiments were performed and the obtained results were compared with the results of other popular clustering methods. The simulation results revealed that the performance of the modified GSA was better than other state-of-the-art meta-heuristic optimization algorithms. Moreover, the proposed method for the clustering problem in WSNs outperformed other popular clustering methods and increased the lifetime of WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks’ applications in agriculture. Comput Standards Interfaces 36(2):263–270

    Google Scholar 

  • Abdul Latiff NM, Tsimenidis CC, Sharif BS (2007) Energy-aware clustering for wireless sensor networks using particle swarm optimization. In: 2007 IEEE 18th international symposium on personal, indoor and mobile radio communications. IEEE, Athens, pp 1–5

    Google Scholar 

  • Agarwal PK, Procopiuc CM (2002) Exact and approximation algorithms for clustering. Algorithmica 33(2):201–226

    MathSciNet  MATH  Google Scholar 

  • Akyildiz IF et al (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422

    Google Scholar 

  • Altinoz OT, Yilmaz AE, Weber G-W (2014) Improvement of the gravitational search algorithm by means of low-discrepancy sobol quasi random-number sequence based initialization. Adv Electr Comput Eng 14(3):55–62

    Google Scholar 

  • Angelov P, Yager R (2013) Density-based averaging—a new operator for data fusion. Inf Sci 222:163–174

    MathSciNet  MATH  Google Scholar 

  • Angelov P, Ramezani R, Zhou X (2008) Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, Hong Kong, pp 1456–1463

    Google Scholar 

  • Bapat V et al (2017) WSN application for crop protection to divert animal intrusions in the agricultural land. Comput Electr Agric 133:88–96

    Google Scholar 

  • Baruah RD, Angelov P (2012) Evolving local means method for clustering of streaming data. In: 2012 IEEE international conference on fuzzy systems. IEEE, Brisbane, QLD, pp 1–8

    Google Scholar 

  • Baruah RD, Angelov P (2014) DEC: dynamically evolving clustering and its application to structure identification of evolving fuzzy models. IEEE Trans Cybern 44(9):1619–1631

    Google Scholar 

  • Bin S, Xinyun J (2014) Applications of compressive sensing in target tracking of wireless sensor networks. J Electr Measure Instrum 5:001

    Google Scholar 

  • Chao Y et al (2016) A novel gravitational search algorithm for multilevel image segmentation and its application on semiconductor packages vision inspection. Optik-Int J Light Electron Opt 127(14):5770–5782

    Google Scholar 

  • Cho MY, Hoang TT (2017) A differential particle swarm optimization-based support vector machine classifier for fault diagnosis in power distribution systems. Adv Electr Comput Eng 17(3):51–61

    Google Scholar 

  • Coca E, Popa V (2012) A practical solution for time synchronization in wireless sensor networks. Adv Electr Comput Eng 12(4):57–62

    Google Scholar 

  • Dahiya P, Sharma V, Naresh R (2015) Solution approach to automatic generation control problem using hybridized gravitational search algorithm optimized PID and FOPID controllers. Adv Electr Comput Eng 15(2):23–34

    Google Scholar 

  • Das P, Behera HS, Panigrahi BK (2016) A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol Comput 28:14–28

    Google Scholar 

  • Edwards-Murphy F et al (2016) b + WSN: smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Comput Electron Agric 124:211–219

    Google Scholar 

  • Elhabyan RS, Yagoub MC (2014) Energy efficient clustering protocol for WSN using PSO. In: 2014 Global information infrastructure and networking symposium (GIIS). IEEE, Montreal, QC, pp 1–3

    Google Scholar 

  • Fan C-S (2016) HIGH&58; a hexagon-based intelligent grouping approach in wireless sensor networks. Adv Electr Comput Eng 16(1):41–46

    Google Scholar 

  • Fang W et al (2012) Cluster-based data gathering in long-strip wireless sensor networks. Adv Electr Comput Eng 12(1):3–8

    Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    MATH  Google Scholar 

  • Furtak J, Zieliński Z, Chudzikiewicz J (2016) Security techniques for the WSN link layer within military IoT. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE, Reston, VA, pp 233–238

    Google Scholar 

  • González B et al (2015) Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Expert Syst Appl 42(14):5839–5847

    Google Scholar 

  • Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd annual Hawaii international conference on system sciences. IEEE, Maui, HI, p 10. https://doi.org/10.1109/HICSS.2000.926982

    Chapter  Google Scholar 

  • Iglesias JA et al (2010) Evolving classification of agents’ behaviors: a general approach. Evol Syst 1(3):161–171

    Google Scholar 

  • Islam MR, Kim J (2009) Cooperative technique based on sensor selection in wireless sensor network. Adv Electr Comput Eng 9(1):56–62

    Google Scholar 

  • Jannu S, Dara S, Kumar KK, Bandari S (2018) Efficient algorithms for hotspot problem in wireless sensor networks: gravitational search algorithm. In: Thampi S, Mitra S, Mukhopadhyay J, Li KC, James A, Berretti S (eds) Intelligent systems technologies and applications. ISTA 2017. Advances in intelligent systems and computing, vol 683. Springer, Cham, pp 41–53

    Google Scholar 

  • Li M, Lin H-J (2015) Design and implementation of smart home control systems based on wireless sensor networks and power line communications. IEEE Trans Industr Electron 62(7):4430–4442

    Google Scholar 

  • Li X, Engelbrecht A, Epitropakis MG (2013) Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep

  • Markovic GZ (2016) Wavelength converters placement in optical networks using bee colony optimization. Adv Electr Comput Eng 16(1):3–10

    MathSciNet  Google Scholar 

  • Masehian E, Sedighizadeh D (2010) Multi-objective PSO-and NPSO-based algorithms for robot path planning. Adv Electr Comput Eng 10(4):69–76

    Google Scholar 

  • Mekonnen MT, Rao KN (2017) Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wireless Pers Commun 97(2):2633–2647

    Google Scholar 

  • Mood S, Rasshedi E, Javidi M (2016) New functions for mass caculation in gravitational search algorithm. J Comput Secur 2(3)

  • Muruganathan SD et al (2005) A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Commun Mag 43(3):S8–13

    Google Scholar 

  • Nezamabadi-pour H (2015) A quantum-inspired gravitational search algorithm for binary encoded optimization problems. Eng Appl Artif Intell 40:62–75

    Google Scholar 

  • Oh B et al (2010) Genetic algorithm-based dynamic vehicle route search using car-to-car communication. Adv Electr Comput Eng 10(4):81–86

    Google Scholar 

  • Raghuvanshi AS, Tiwari S, Tripathi R, Kishor N (2010) Optimal number of clusters in wireless sensor networks: an FCM approach. In: 2010 International Conference on Computer and Communication Technology (ICCCT). IEEE, Allahabad, Uttar Pradesh, pp 817–823

    Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  • Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms using statistical tests. In: 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, Istanbul, pp 1–8

    Google Scholar 

  • Rotariu C, Manta V, Ciobotariu R (2013) Integrated system based on wireless sensors network for cardiac arrhythmia monitoring. Adv Electr Comput Eng 13(1):95–100

    Google Scholar 

  • Sarafrazi S, Nezamabadi-Pour H, Saryazdi S (2011) Disruption: a new operator in gravitational search algorithm. Scientia Iranica 18(3):539–548

    Google Scholar 

  • Shams M, Rashedi E, Hakimi A (2015) Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl Math Comput 258:436–453

    MathSciNet  MATH  Google Scholar 

  • Shanthi G, Sundarambal M (2018) FSO–PSO based multihop clustering in WSN for efficient medical building management system. Cluster Comput. https://doi.org/10.1007/s10586-017-1569-x

    Article  Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No.98TH8360). IEEE, Anchorage, AK, pp 69–73

    Google Scholar 

  • Tang Z, Tian Y (2011) Wireless meter reading based energy-balanced steady clustering routing algorithm for sensor networks. Adv Electr Comp Eng 11(2):9–14

    Google Scholar 

  • Vijayalakshmi K, Anandan P (2018) A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster Comput. https://doi.org/10.1007/s10586-017-1608-7

    Article  Google Scholar 

  • Mohammed I, Duman E (2017) Implementation of a smart house application using wireless sensor networks. In: 9th International Conference on Networks & Communications. Computer Science & Information Technology, pp 53–70. https://doi.org/10.5121/csit.2017.71205

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Google Scholar 

  • Zhang LF et al (2015) A novel fitness allocation algorithm for maintaining a constant selective pressure during GA procedure. Neurocomputing 148:3–16

    Google Scholar 

  • Zhou X, Angelov P (2007) Autonomous visual self-localization in completely unknown environment using evolving fuzzy rule-based classifier. In: 2007 IEEE symposium on computational intelligence in security and defense applications. IEEE, Honolulu, HI, pp 131–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masoud Javidi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Reconsider Lemma 1.

$$\mathop {\lim }\limits_{\alpha \to \infty } M_{best} = 1.$$

Proof

The scaled fitness values for all agents in each population can be derived as follows:

$$\mathop {\lim }\limits_{\alpha \to \infty } fit_{i}^{s} = \left( {\mathop \sum \limits_{{fit_{j} \in fit_{i}^{ + } }} \left( {fit_{i} - fit_{j} } \right)^{1/\infty } } \right)^{\infty } - \left( {\mathop \sum \limits_{{fit_{j} \in fit_{i}^{ - } }} \left( {fit_{j} - fit_{i} } \right)^{\infty } } \right)^{1/\infty } = \left\{ {\begin{array}{*{20}l} {\left( {N - 1} \right)^{\infty } } \hfill & {\quad fit_{i} = fit_{best} } \hfill \\ { - \left( {fit_{best} - fit_{worst} } \right) } \hfill & {\quad fit_{i} = fit_{worst} } \hfill \\ {N_{{i^{ - } }}^{\infty } - \left( {fit_{best} - fit_{i} } \right)} \hfill & {\quad otherwise } \hfill \\ \end{array} } \right.,$$

where \(N_{{i^{ - } }}\) denotes the number of \(fit_{j} \in fit_{i}^{ - }\). The value of \(\mathop {\lim }\nolimits_{\alpha \to \infty } M_{best}\) can be computed as follows:

$$\mathop {\lim }\limits_{\alpha \to \infty } M_{best} = \mathop {\lim }\limits_{\alpha \to \infty } \frac{{fit_{best}^{s} - fit_{worst}^{s} }}{{\mathop \sum \nolimits_{j = 1}^{N} \left( {fit_{j}^{s} - fit_{worst}^{s} } \right)}} = \frac{{\left( {N - 1} \right)^{\infty } + (fit_{best} - fit_{worst} )}}{{\left( {N - 1} \right)^{\infty } + \left( {fit_{best} - fit_{worst} } \right) + \mathop \sum \nolimits_{i \ne best} (fit_{i}^{s} + (fit_{best} - fit_{worst} ))}} = \frac{1}{{1 + \mathop \sum \nolimits_{i \ne best} \frac{{N_{{i^{ - } }}^{\infty } - (fit_{best} - fit_{i} )}}{{\left( {N - 1} \right)^{\infty } + \left( {fit_{best} - fit_{worst} } \right)}} + \frac{{(N - 1)(fit_{best} - fit_{worst} )}}{{\left( {N - 1} \right)^{\infty } + \left( {fit_{best} - fit_{worst} } \right)}}}}.$$

We know that \(\frac{{(N - 1)(fit_{best} - fit_{worst} )}}{{\left( {N - 1} \right)^{\infty } + \left( {fit_{best} - fit_{worst} } \right)}} = 0\). Moreover \(1> \frac{{N_{{i^{ - } }} }}{N - 1} \ge 0\). Thus \(\left( {\frac{{N_{{i^{ - } }} }}{N - 1}} \right)^{\infty } = \frac{{N_{{i^{ - } }}^{\infty } }}{{\left( {N - 1} \right)^{\infty } }} = 0\).

Moreover \(\frac{{N_{{i^{ - } }}^{\infty } }}{{\left( {N - 1} \right)^{\infty } }} \ge \frac{{N_{{i^{ - } }}^{\infty } - \left( {fit_{best} - fit_{i} } \right)}}{{\left( {N - 1} \right)^{\infty } + \left( {fit_{best} - fit_{worst} } \right)}} \ge 0.\) So, \(\frac{{N_{{i^{ - } }}^{\infty } - (fit_{best} - fit_{i} )}}{{\left( {N - 1} \right)^{\infty } + \left( {fit_{best} - fit_{worst} } \right)}} = 0\).

Thus, \(\mathop {\lim }\nolimits_{\alpha \to \infty } M_{best} = 1\).

On the other hand, we know that \(\mathop \sum \nolimits_{i = 1}^{N} M_{i} \left( t \right) = 1.\) Thus, the value of other masses is equal to 0.

Reconsider Lemma 2.

$$\mathop {\lim }\limits_{\alpha \to \infty } M_{i} = \frac{1}{N} , i = 1, \ldots ,N.$$

Proof

The scaled fitness values for all agents in each population can be derived as follows:

$$\mathop {\lim }\limits_{\alpha \to 0} fit_{i}^{s} = \left( {\mathop \sum \limits_{{fit_{j} \in fit_{i}^{ + } }} \left( {fit_{i} - fit_{j} } \right)^{\infty } } \right)^{1/\infty } - \left( {\mathop \sum \limits_{{fit_{j} \in fit_{i}^{ - } }} \left( {fit_{j} - fit_{i} } \right)^{1/\infty } } \right)^{\infty } = \left\{ {\begin{array}{*{20}l} {(fit_{best} - fit_{worst} )} \hfill & {\quad fit_{i} = fit_{best} } \hfill \\ {\left( {N - 1} \right)^{\infty } } \hfill & {\quad fit_{i} = fit_{worst} } \hfill \\ {\left( {fit_{i} - fit_{worst} } \right) - N_{{i^{ + } }}^{\infty } } \hfill & {\quad otherwise} \hfill \\ \end{array} } \right.,$$

where \(N_{{i^{ + } }}\) denotes the number of \(fit_{j} \in fit_{i}^{ + }\). This lemma can be proved similarly as above for Lemma 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi Mood, S., Javidi, M.M. Energy-efficient clustering method for wireless sensor networks using modified gravitational search algorithm. Evolving Systems 11, 575–587 (2020). https://doi.org/10.1007/s12530-019-09264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-019-09264-x

Keywords

Navigation