Skip to main content
Log in

Role of excess Al on the combustion reaction in the Al-TiO2-C system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Of various systems that utilize a self-propagating high-temperature synthesis, the Al-TiO2-C system is representative of in-situ production of metal matrix composites reinforced with TiC and Al2O3. Contrary to common understanding, however, the following reaction 4Al + 3TiO2 + 3C→3TiC + 2Al2O3 is infeasible in the Al-TiO2-C system with the given stoichiometric composition of 4Al + 3TiO2 + 3C. Experiments have shown that the formation of TiC and Al2O3 is feasible only in an Al-TiO2-C system that contains a certain amount of excess Al. In this study, the mechanism of the reactions in the Al-TiO2-C system was elucidated in order to explain why excess Al is needed to promote the formation of TiC and Al2O3. We also estimated the amount of excess Al that is necessary to promote the complete transformation of the Al-TiO2-C powders to TiC and Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Yang, M. Sun, G. Gan, C. Xu, and Z. Huang, J. Alloys Comp. 494, 261 (2010)

    Article  Google Scholar 

  2. Q. Y. Hou, Surf. Coat. Technol. 226, 113 (2013).

    Article  Google Scholar 

  3. V. P. Kobyakov and T. V. Barlnova, Inorganic Materials. 45, 211 (2009).

    Article  Google Scholar 

  4. T. D. Xia, Z. A. Munir, Y. L. Tang, W. J. Zhao, and T. M. Wang, J. Am. Ceram. Soc. 83, 507 (2000).

    Article  Google Scholar 

  5. S. Kleiner and F. Bertocco, Mater. Chem. Phys. 89, 362 (2005).

    Article  Google Scholar 

  6. H. Chia-Wen and C. Chuen-Guang, Metall. Mater. Trans. B. 33B, 31 (2002).

    Google Scholar 

  7. S. O. Chwa and D. Klein, Surf. Coat. Technol. 194, 215 (2005).

    Article  Google Scholar 

  8. P. C. Maity, S. C. Panigrahi, and P. N. Chakraborty, Scripta Metall. Mater. 28, 549 (1993).

    Article  Google Scholar 

  9. I. Gheorghe and H. J. Rack, Metall. Mater. Trans. A. 33A, 2155 (2002).

    Article  Google Scholar 

  10. Q. Zhang, B. L. Xiao, W. G. Wang, and Z. Y. Ma, Acta Mater. 60, 7090 (2012).

    Article  Google Scholar 

  11. L. Lu, M. O. Lai, Y. Su, H. L. Teo, and C. F. Feng, Scripta Mater. 45, 1017 (2001).

    Article  Google Scholar 

  12. C. F. Feng and L. Froyen, Scripta Mater. 36, 467 (1997).

    Article  Google Scholar 

  13. E. M. Sharifi, F. Karimzadeh, and M. H. Enayati, J. Alloys Comp. 502, 508 (2010).

    Article  Google Scholar 

  14. J. H. Lee, S. K. Ko, and C. W. Won, Mater. Research Bulletin, 36, 1157 (2001).

    Article  Google Scholar 

  15. B. Yang, G. Chen, and J. Zhang, Mater. Design. 22, 645 (2001).

    Article  Google Scholar 

  16. Z. Wang and X. Liu, J. Mater. Sci. 40, 1047 (2005).

    Article  Google Scholar 

  17. P. Li, E. G. Kandalova, V. I. Nikitin, A. G. Makarenko, A. R. Luts, and Z. Yanfei, Scripta Mater. 49, 699 (2003).

    Article  Google Scholar 

  18. I. Kerti, Mater. Lett. 59, 3795 (2005).

    Article  Google Scholar 

  19. G. Golkar, S. M. Zebarjad, and J. V. Khaki, J. Alloys Comp. 504, 566 (2010).

    Article  Google Scholar 

  20. T. D. Xia, T. Z. Liu, W. J. Zhao, and B. Y. Ma, J. Mater. Sci. 36, 5581 (2001).

    Article  Google Scholar 

  21. P. Yu, Z. Mei, and S. C. Tjong, Mater. Chem. Phys. 93, 109 (2005).

    Article  Google Scholar 

  22. S. K. Mishra, S. K. Das, and V. Sherbacov, Comp. Sci. Tech. 67, 2447 (2007).

    Article  Google Scholar 

  23. H. Zhu, C. Jia, J. Li, J. Zhao, J. Song, Y. Yao, and Z. Xie, Powder Tech. 217, 401 (2012).

    Article  Google Scholar 

  24. Z. Wang and X. Liu, J. Mater. Sci. 40, 4727 (2005).

    Article  Google Scholar 

  25. Q. Dong, Q. Tang, W. C. Li, and D. Y. Wu, Mater. Lett. 55, 259 (2002).

    Article  Google Scholar 

  26. H. Zhu, J. Min, Y. Ai, D. Chu, and H. Wang, Mater. Sci. Eng. A. 527, 6178 (2010).

    Article  Google Scholar 

  27. X. C. Tong and H. S. Fang, Metall. Mater. Trans. A. 29A, 875 (1998).

    Article  Google Scholar 

  28. X. C. Tong and H. S. Fang, Metall. Mater. Trans. A. 29A, 893 (1998).

    Article  Google Scholar 

  29. M. S. Song, M. X. Zhang, S. G. Zhang, B. Huang, and J. G. Li, Mater. Sci. Eng. A. 473, 166 (2008).

    Article  Google Scholar 

  30. Z. Wang, X. Liu, J. Zhang, and X. Bian, J. Mater. Sci. 39, 667 (2004).

    Article  Google Scholar 

  31. J. H. Lee, S. K. Ko, and C. W. Won, Mate. Res. Bull. 36, 1157 (2001).

    Article  Google Scholar 

  32. H. Zhu, Y. Jiang, Y. Yao, J. Song, J. Li, and Z. Xie, Mater. Chem. Phys. 137, 532 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JW., Lee, JM., Lee, JH. et al. Role of excess Al on the combustion reaction in the Al-TiO2-C system. Met. Mater. Int. 20, 1151–1156 (2014). https://doi.org/10.1007/s12540-014-6020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6020-8

Keywords

Navigation