Skip to main content
Log in

Role of deformation twins in static recrystallization kinetics of high-purity alpha titanium

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The importance of deformation twins in static recrystallization kinetics of high-purity alpha titanium was investigated by carrying out thermal annealing tests of deformed materials in combination with electron-backscatterdiffraction- based microstructural analysis. Prior to thermal annealing, the material was compressed to a true strain of 0.22 along three directions to introduce different twinning characteristics. Our results showed that deformation twins substantially promoted the static recrystallization process by deepening the microstructural inhomogeneity induced by the formation of twin boundaries and twinning-induced crystallographic lattice reorientation. Twin morphology was also observed to be important because it influenced the extent of microstructural inhomogeneity. Intersecting twin morphology, caused by the activation of multiple twin variants, was more effective than parallel twin morphology, caused by the activation of a single twin variant (or a twin variant pair), because it gave rise to more twin boundaries, more twin boundary junctions (intersections, triple junctions, etc.), and greater in-grain crystallographic orientation spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, A. D. Rollett, et al. Mat. Sci. Eng. A 238, 219 (1997).

    Article  Google Scholar 

  2. I. Gutierrez, F. R. Castro, J. J. Urcola, and M. Fuentes, Mater. Sci. Eng. 102, 77 (1988).

    Article  Google Scholar 

  3. F. J. Humphreys, Acta Mater. 45, 4231 (1997).

    Article  Google Scholar 

  4. T. Furu, H. R. Shercliff, G. J. Baxter, and C. M. Sellars, Acta Mater. 47, 2377 (1999).

    Article  Google Scholar 

  5. K. J. Kurzydlowski, B. Ralph, A. Chojnacka, and J. J. Bucki, Acta Mater. 44, 3005 (1996).

    Article  Google Scholar 

  6. Y. B. Park, D. N. Lee, and G. Gottstein, Acta Mater. 46, 3371 (1998).

    Article  Google Scholar 

  7. Y. L, D. A. Molodov, and G. Gottstein, Acta Mater. 59, 3229 (2011).

    Article  Google Scholar 

  8. Y. Chen, J. Li, B. Tang, H. Kou, X. Xue, and Y. Cui, J. Alloys Comp. 618, 146 (2015).

    Article  Google Scholar 

  9. Y. B. Chun and S. K. Hwang, Acta Mater. 56, 369 (2008).

    Article  Google Scholar 

  10. Y. B. Chun, S. L. Semiatin, and S. K. Hwang, Acta Mater. 54, 3673 (2006).

    Article  Google Scholar 

  11. R. J. Contieri, M. Zanotello, and R. Caram, Mat. Sci. Eng. A 527, 3994 (2010).

    Article  Google Scholar 

  12. N. Bozzolo, N. Dewobroto, T. Grosdidier, and F. Wagner, Mat. Sci. Eng. A 397, 346 (2005).

    Article  Google Scholar 

  13. F. Wagner, N. Bozzolo, O. Van Landuyt, and T. Grosdidier, Acta Mater. 50, 1245 (2002).

    Article  Google Scholar 

  14. Z. Zeng, S. Jonsson, and H. J. Roven, Acta Mater. 57, 5822 (2009).

    Article  Google Scholar 

  15. R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles-SI Version, 4th ed., pp. 230–234, Cengage Learning, USA (2009).

    Google Scholar 

  16. A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., pp. 215–267, Elsevier, UK (2004).

    Google Scholar 

  17. M. H. Yoo, Metall. Trans. A 12, 409 (1981).

    Article  Google Scholar 

  18. G. E. Dieter, Mechanical Metallurgy, pp. 127–130, McGrawhill Book Company, UK (1988).

    Google Scholar 

  19. Y. Xin, H. Zhou, H. Yu, R. Hong, H. Zhang, and Q. Liu, Mat. Sci. Eng. A 622, 178 (2015).

    Article  Google Scholar 

  20. T. Al-Samman and G. Gottstein, Mat. Sci. Eng. A 490, 411 (2008).

    Article  Google Scholar 

  21. C. H. Park, C.-S. Oh, and S. Kim, Mat. Sci. Eng. A 542, 127 (2012).

    Article  Google Scholar 

  22. X. Li, P. Yang, L. N. Wang, L. Meng, and F. Cui, Mat. Sci. Eng. A 517, 160 (2009).

    Article  Google Scholar 

  23. L. Xiao, Y. Ping, M. Li, and C. Feng’e, Acta Metallugica Sinica 46, 147 (2010).

    Google Scholar 

  24. M. R. Barnett, Mater. Trans. 44, 571 (2003).

    Article  Google Scholar 

  25. M. Battaini, E. V. Pereloma, and C. H. J. Davies, Metall. Mater. Trans. A 38, 276 (2007).

    Article  Google Scholar 

  26. N. P. Gurao, R. Kapoor, and S. Suwas, Acta Mater. 59, 3431 (2011).

    Article  Google Scholar 

  27. J. W. Won, C. H. Park, S.-G. Hong, and C. S. Lee, J. Alloys Comp. 651, 245 (2015).

    Article  Google Scholar 

  28. S.-G. Hong, S. H. Park, and C. S. Lee, Acta Mater. 58, 5873 (2010).

    Article  Google Scholar 

  29. S. H. Park, S.-G. Hong, and C. S. Lee, Scripta Mater. 62, 202 (2010).

    Article  Google Scholar 

  30. J. W. Won, K.-T. Park, S.-G. Hong, and C. S. Lee, Mat. Sci. Eng. A 637, 215 (2015).

    Article  Google Scholar 

  31. M. Wronski, K. Wierzbanowski, M. Wróbel, S. Wronski, and B. Bacroix, Met. Mater. Int. 21, 805 (2015).

    Article  Google Scholar 

  32. J. Su, M. Sanjari, A. S. H. Kabir, J. J. Jonas, and S. Yue, Mat. Sci. Eng. A 662, 412 (2016).

    Article  Google Scholar 

  33. A. A. Salem, S. R. Kalidindi, and R. D. Doherty, Acta Mater. 51, 4225 (2003).

    Article  Google Scholar 

  34. D. L. Yin, K. F. Zhang, G. F. Wang, and W. B. Han, Mat. Sci. Eng. A 392, 320 (2005).

    Article  Google Scholar 

  35. H. Y. Chao, H. F. Sun, W. Z. Chen, and E. D. Wang, Mater. Character. 62, 312 (2011).

    Article  Google Scholar 

  36. J. W. Won, D. Kim, S.-G. Hong, and C. S. Lee, J. Alloys Comp. 683, 92 (2016).

    Article  Google Scholar 

  37. C. Haase, M. Kühbach, L. A. Barrales-Mora, S. L. Wong, F. Roters, G. Gottstein, et al., Acta Mater. 100, 155 (2015).

    Article  Google Scholar 

  38. H. Miura, T. Sakai, H. Hamaji, and J. J. Jonas, Scripta Mater. 50, 65 (2004).

    Article  Google Scholar 

  39. G. Farkas, H. Choe, K. Máthis, Z. Száraz, Y. Noh, P. Minárik, et al., Met. Mater. Int. 21, 652 (2015).

    Article  Google Scholar 

  40. Y. B. Chun and C. H. J. Davies, Metall. Mater. Trans. A 42, 4113 (2011).

    Article  Google Scholar 

  41. J. W. R. Drouard and E. R. Parker, Trans. Metall. Soc. AIME 197, 1226 (1953).

    Google Scholar 

  42. H.-T. Son, Y.-H. Kim, J.-H. Kim, H.-S. Yoo, and J.-W. Choi, Korean J. Met. Mater. 53, 336 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J.W., Lee, T., Hong, SG. et al. Role of deformation twins in static recrystallization kinetics of high-purity alpha titanium. Met. Mater. Int. 22, 1041–1048 (2016). https://doi.org/10.1007/s12540-016-6369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6369-y

Keywords

Navigation