Skip to main content
Erschienen in: Metals and Materials International 3/2019

22.11.2018

Microstructure and Properties of Novel Heat Resistant Al–Ce–Cu Alloy for Additive Manufacturing

verfasst von: D. R. Manca, A. Yu. Churyumov, A. V. Pozdniakov, A. S. Prosviryakov, D. K. Ryabov, A. Yu. Krokhin, V. A. Korolev, D. K. Daubarayte

Erschienen in: Metals and Materials International | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure and properties of the novel heat resistant Al–3Ce–7Cu alloy produced by selective laser melting were investigated. Fine Al11Ce3 and Al6.5CeCu6.5 eutectic phases were found in the microstructure. Annealing at temperatures in the 250–400 °C range leads to a decrease in the hardness. Hardness has larger values after annealing at 350 and 400 °C than at 250 °C due to the precipitation of nanosized particles. The low hardness after quenching and aging at 190 °C is caused by quench stress relief and the absence of aging hardening because of poor solid solution. The as-printed yield strength, ultimate tensile strength and elongation are 274 MPa, 456 MPa and 4.4%, respectively. High mechanical properties of the Al–3Ce–7Cu alloy were demonstrated by high temperature tension and compression tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef
2.
Zurück zum Zitat C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Addit. Manuf. 22, 165–175 (2018)CrossRef C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Addit. Manuf. 22, 165–175 (2018)CrossRef
3.
Zurück zum Zitat K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique. Phys. Procedia A 12A, 393–401 (2011)CrossRef K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique. Phys. Procedia A 12A, 393–401 (2011)CrossRef
4.
Zurück zum Zitat E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)CrossRef E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)CrossRef
5.
Zurück zum Zitat L. Thijs, K. Kempen, J.-P. Kruth, J. van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61(5), 1809–1819 (2013)CrossRef L. Thijs, K. Kempen, J.-P. Kruth, J. van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61(5), 1809–1819 (2013)CrossRef
6.
Zurück zum Zitat F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)CrossRef F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)CrossRef
7.
Zurück zum Zitat N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1–4, 77–86 (2014)CrossRef N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1–4, 77–86 (2014)CrossRef
8.
Zurück zum Zitat N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65, 417–424 (2015)CrossRef N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65, 417–424 (2015)CrossRef
9.
Zurück zum Zitat P. Ma, Y. Jia, K.G. Prashanth, S. Scudino, Z. Yu, J. Eckert, Microstructure and phase formation in Ale20Sie5Fee3Cue1Mg synthesized by selective laser melting. J. Alloys Compd. 657, 430–435 (2016)CrossRef P. Ma, Y. Jia, K.G. Prashanth, S. Scudino, Z. Yu, J. Eckert, Microstructure and phase formation in Ale20Sie5Fee3Cue1Mg synthesized by selective laser melting. J. Alloys Compd. 657, 430–435 (2016)CrossRef
10.
Zurück zum Zitat K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys. Procedia 12, 369–374 (2011)CrossRef K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys. Procedia 12, 369–374 (2011)CrossRef
11.
Zurück zum Zitat A.B. Spierings, K. Dawson, P. Dumitraschkewitz, S. Pogatscher, K. Wegener, Microstructure characterization of SLM-processed Al–Mg–Sc–Zr alloy in the heat treated and HIPed condition. Addit. Manuf. 20, 173–181 (2018)CrossRef A.B. Spierings, K. Dawson, P. Dumitraschkewitz, S. Pogatscher, K. Wegener, Microstructure characterization of SLM-processed Al–Mg–Sc–Zr alloy in the heat treated and HIPed condition. Addit. Manuf. 20, 173–181 (2018)CrossRef
12.
Zurück zum Zitat Y. Shi, P. Rometsch, K. Yang, F. Palm, X. Wu, Characterisation of a novel Sc and Zr modified Al–Mg alloy fabricated by selective laser melting. Mater. Lett. 196, 347–350 (2017)CrossRef Y. Shi, P. Rometsch, K. Yang, F. Palm, X. Wu, Characterisation of a novel Sc and Zr modified Al–Mg alloy fabricated by selective laser melting. Mater. Lett. 196, 347–350 (2017)CrossRef
13.
Zurück zum Zitat A.V. Pozdniakov, A.Yu. Churyumov, I.S. Loginova, D.K. Daubarayte, D.K. Ryabov, V.A. Korolev, Microstructure and properties of novel AlSi11CuMn alloy manufactured by selective laser melting. Mater. Lett. 225, 33–36 (2018)CrossRef A.V. Pozdniakov, A.Yu. Churyumov, I.S. Loginova, D.K. Daubarayte, D.K. Ryabov, V.A. Korolev, Microstructure and properties of novel AlSi11CuMn alloy manufactured by selective laser melting. Mater. Lett. 225, 33–36 (2018)CrossRef
14.
Zurück zum Zitat I.I. Novikov, Goryachelomkosttsvetnykhmetallovisplavov (Hot Shortness of Non-ferrous Metals and Alloys) (Nauka, Moscow, 1966) I.I. Novikov, Goryachelomkosttsvetnykhmetallovisplavov (Hot Shortness of Non-ferrous Metals and Alloys) (Nauka, Moscow, 1966)
15.
Zurück zum Zitat D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. 49, 629–711 (2004)CrossRef D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. 49, 629–711 (2004)CrossRef
16.
Zurück zum Zitat V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007), p. 530p V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007), p. 530p
17.
Zurück zum Zitat ASM International, ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (The Materials Information Company, Materials Park, 2010) ASM International, ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (The Materials Information Company, Materials Park, 2010)
18.
Zurück zum Zitat V.S. Zolotorevskiy, A.V. Pozdniakov, Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range. Int. J. Cast Metals Res. 27(4), 193–198 (2014)CrossRef V.S. Zolotorevskiy, A.V. Pozdniakov, Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range. Int. J. Cast Metals Res. 27(4), 193–198 (2014)CrossRef
19.
Zurück zum Zitat A.V. Pozdniakov, V.S. Zolotorevskiy, O.I. Mamzurina, Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range. Int. J. Cast Metals Res. 28(5), 318–321 (2015)CrossRef A.V. Pozdniakov, V.S. Zolotorevskiy, O.I. Mamzurina, Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range. Int. J. Cast Metals Res. 28(5), 318–321 (2015)CrossRef
20.
Zurück zum Zitat C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater. Sci. Eng. A 648, 9–14 (2015)CrossRef C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater. Sci. Eng. A 648, 9–14 (2015)CrossRef
21.
Zurück zum Zitat A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, S.S. Babu, Evaluation of an Al–Ce alloy for laser additive manufacturing. Acta Mater. 126, 507–519 (2017)CrossRef A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, S.S. Babu, Evaluation of an Al–Ce alloy for laser additive manufacturing. Acta Mater. 126, 507–519 (2017)CrossRef
22.
Zurück zum Zitat V.S. Zolotorevskiy, A.V. Pozdniakov, A.Yu. Churyumov, Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation. Phys. Metals Metallogr. 113(11), 1052–1060 (2012)CrossRef V.S. Zolotorevskiy, A.V. Pozdniakov, A.Yu. Churyumov, Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation. Phys. Metals Metallogr. 113(11), 1052–1060 (2012)CrossRef
23.
Zurück zum Zitat N.A. Belov, A.V. Khvan, A.N. Alabin, Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner. Mater. Sci. Forum 519–521, 395–400 (2006)CrossRef N.A. Belov, A.V. Khvan, A.N. Alabin, Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner. Mater. Sci. Forum 519–521, 395–400 (2006)CrossRef
24.
Zurück zum Zitat N.A. Belov, A.V. Khvan, The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Mater. 55, 5473–5482 (2007)CrossRef N.A. Belov, A.V. Khvan, The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Mater. 55, 5473–5482 (2007)CrossRef
25.
Zurück zum Zitat A.V. Khvan, Optimization of the phase composition of high-tech aluminum alloys with a composite structure based on Ce- and Ca-containing eutectics, Ph.D. thesis, NUST MISIS, Moscow, 2008 A.V. Khvan, Optimization of the phase composition of high-tech aluminum alloys with a composite structure based on Ce- and Ca-containing eutectics, Ph.D. thesis, NUST MISIS, Moscow, 2008
Metadaten
Titel
Microstructure and Properties of Novel Heat Resistant Al–Ce–Cu Alloy for Additive Manufacturing
verfasst von
D. R. Manca
A. Yu. Churyumov
A. V. Pozdniakov
A. S. Prosviryakov
D. K. Ryabov
A. Yu. Krokhin
V. A. Korolev
D. K. Daubarayte
Publikationsdatum
22.11.2018
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 3/2019
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-00211-0

Weitere Artikel der Ausgabe 3/2019

Metals and Materials International 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.