Skip to main content
Log in

Processing Route Effects on the Mechanical and Corrosion Properties of Dual Phase Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The mechanical and corrosion behaviors of low carbon DP steel were studied based on different processing routes: (1) intercritical annealing (IA), (2) step quenching (SQ) via austenitization and quick transferring of the sample to the second furnace, and (3) Slow SQ via furnace cooling to the desired temperature. The properties were found to be highly dependent on the volume fraction of martensite (VM) and the density of ferrite/martensite interfaces. However, at the same martensite content, the mechanical properties of Slow SQ sheet were inferior than those of SQ and IA sheets, which were related to the relatively poor work-hardening behavior due to the severe partitioning of Mn between ferrite and martensite phases. The latter was also responsible for an increase in the corrosion current density (icorr) via galvanic corrosion. These results were analyzed based on the polarization curves and Nyquist plots obtained from the electrochemical impedance spectroscopy test. This study revealed that the SQ route can result in both better mechanical performance and higher corrosion resistance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Gao, X. Chen, Z. Pan, J. Li, Y. Ma, Y. Cao, M. Liu, Q. Lai, L. Xiao, H. Zhou, A high-strength heterogeneous structural dual-phase steel. J. Mater. Sci. 54, 12898–12910 (2019)

    Article  CAS  Google Scholar 

  2. T. Dutta, S. Dey, S. Datta, D. Das, Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput. Mater. Sci. 157, 6–16 (2019)

    Article  CAS  Google Scholar 

  3. J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Relationships between stretch-flangeability and microstructure-mechanical properties in ultra-high-strength dual-phase steels. Met. Mater. Int. 25, 1161–1169 (2019)

    Article  CAS  Google Scholar 

  4. O. Majidi, F. Barlat, Y.P. Korkolis, J. Fu, M.G. Lee, Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet. Met. Mater. Int. 22(6), 968–973 (2016)

    Article  CAS  Google Scholar 

  5. S. Sodjit, V. Uthaisangsuk, Microstructure based prediction of strain hardening behavior of dual phase steels. Mater. Des. 41, 370–379 (2012)

    Article  CAS  Google Scholar 

  6. P.P. Sarkar, P. Kumar, M.K. Manna, P.C. Chakraborti, Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution. Mater. Lett. 59, 2488–2491 (2005)

    Article  CAS  Google Scholar 

  7. J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng. A 627, 230–240 (2015)

    Article  CAS  Google Scholar 

  8. D. Trejo, P. Monteiro, G. Thomas, X. Wang, Mechanical properties and corrosion susceptibility of dual-phase steel in concrete. Cem. Concr. Res. 24, 1245–1254 (1994)

    Article  CAS  Google Scholar 

  9. L. Rao Bhagavathi, G.P. Chaudhari, S.K. Nath, Mechanical and corrosion behavior of plain low carbon dual-phase steels. Mater. Des. 32, 433–440 (2011)

    Article  CAS  Google Scholar 

  10. M. Ismail, B. Muhammad, E. Hamzah, T.W. Keong, Corrosion behaviour of dual-phase and galvanized steels in concrete. Anticorros. Methods Mater. 59, 132–138 (2012)

    Article  CAS  Google Scholar 

  11. C. Zhang, D. Cai, B. Liao, T. Zhao, Y. Fan, A study on the dual-phase treatment of weathering steel 09CuPCrNi. Mater. Lett. 58, 1524–1529 (2004)

    Article  CAS  Google Scholar 

  12. W.R. Osório, L.C. Peixoto, L.R. Garcia, A. Garcia, Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution. Mater. Corros. 60, 804–812 (2009)

    Article  CAS  Google Scholar 

  13. Y. Kayali, B. Anaturk, Investigation of electrochemical corrosion behavior in a 3.5 wt% NaCl solution of boronized dual-phase steel. Mater. Des. 46, 776–783 (2013)

    Article  CAS  Google Scholar 

  14. O. Keleştemur, M. Aksoy, S. Yildiz, Corrosion behavior of tempered dual-phase steel embedded in concrete. Int. J. Miner. Metall. Mater. 16, 43–50 (2009)

    Article  Google Scholar 

  15. T. Allam, M. Abbas, Mechanical properties, formability, and corrosion behavior of dual phase weathering steels developed by an inter-critical annealing treatment. Steel Res. Int. 86, 231–240 (2015)

    Article  CAS  Google Scholar 

  16. A. Bag, K.K. Ray, E.S. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall. Mater. Trans. A 30, 1193–1202 (1999)

    Article  Google Scholar 

  17. D. Das, P.P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J. Mater. Sci. 44, 2957–2965 (2009)

    Article  CAS  Google Scholar 

  18. R. Nadlene, H. Esah, S. Norliana, M.A. Mohd Irwan, Study on the effect of volume fraction of dual phase steel to corrosion behaviour and hardness. Int. J. Mech. Mechatron. Eng. 5, 393–396 (2011)

    Google Scholar 

  19. O. Abedini, M. Behroozi, P. Marashi, E. Ranjbarnodeh, M. Pouranvari, Intercritical heat treatment temperature dependence of mechanical properties and corrosion resistance of dual phase steel. Mater. Res. 22, e20170969 (2019)

    Article  CAS  Google Scholar 

  20. S. Kumar, A. Kumar, R. Madhusudhan, R. Sah, S. Manjini, Mechanical and electrochemical behavior of dual-phase steels having varying ferrite–martensite volume fractions. J. Mater. Eng. Perform. 28, 3600–3613 (2019)

    Article  CAS  Google Scholar 

  21. M. Balbi, I. Alvarez-Armas, A. Armas, Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite-martensite dual phase steel. Mater. Sci. Eng. A 733, 1–8 (2018)

    Article  CAS  Google Scholar 

  22. H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, Examination of phase transformation kinetics during step quenching of dual phase steels. Mater. Chem. Phys. 187, 203–217 (2017)

    Article  CAS  Google Scholar 

  23. M. Türkmen, S. Gündüz, Bake-hardening response of high martensite dual-phase steel with different morphologies and volume fractions. Acta Metall. Sin. (Engl. Lett.) 27, 279–289 (2014)

    Article  CAS  Google Scholar 

  24. H. Ashrafi, S. Sadeghzade, R. Emadi, M. Shamanian, Influence of heat treatment schedule on the tensile properties and wear behavior of dual phase steels. Steel Res. Int. 88, 1600213 (2017)

    Article  CAS  Google Scholar 

  25. S. Saadatkia, H. Mirzadeh, J.M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater. Sci. Eng. A 636, 196–202 (2015)

    Article  CAS  Google Scholar 

  26. B. Pourbahari, H. Mirzadeh, M. Emamy, R. Roumina, Enhanced ductility of a fine-grained Mg–Gd–Al–Zn magnesium alloy by hot extrusion. Adv. Eng. Mater. 20, 1701171 (2018)

    Article  CAS  Google Scholar 

  27. H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng. A 528, 3876–3882 (2011)

    Article  CAS  Google Scholar 

  28. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill, New York, 1988)

    Google Scholar 

  29. H. Torkamani, S. Raygan, C.G. Mateo, J. Rassizadehghani, Y. Palizdar, D. San-Martin, Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels. Met. Mater. Int. 24, 773–788 (2018)

    Article  CAS  Google Scholar 

  30. M.S. Chen, W.Q. Yuan, Y.C. Lin, H.B. Li, Z.H. Zou, Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method. Vacuum 146, 142–151 (2017)

    Article  CAS  Google Scholar 

  31. M. Nouroozi, H. Mirzadeh, M. Zamani, Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Mater. Sci. Eng. A 736, 22–26 (2018)

    Article  CAS  Google Scholar 

  32. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater. 53, 3125–3134 (2005)

    Article  CAS  Google Scholar 

  33. H. Seyedrezai, A.K. Pilkey, J.D. Boyd, Effects of martensite particle size and spatial distribution on work hardening behaviour of fine-grained dual-phase steel. Can. Metall. Q. 57, 28–37 (2018)

    Article  CAS  Google Scholar 

  34. N.K. Balliger, T. Gladman, Work hardening of dual-phase steels. Met. Sci. 15, 95–108 (1981)

    Article  CAS  Google Scholar 

  35. H. Mirzadeh, M. Alibeyki, M. Najafi, Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual phase steel. Metall. Mater. Trans. A 48, 4565–4573 (2017)

    Article  CAS  Google Scholar 

  36. L. Zou, Q. Zhou, Quantitative analysis of carbon in carbon steel using SEM/EDS followed by error correction approach. Microsc. Microanal. 19, 1048–1049 (2013)

    Article  Google Scholar 

  37. S. Sun, M. Pugh, Manganese partitioning in dual-phase steel during annealing. Mater. Sci. Eng. A 276, 167–174 (2000)

    Article  Google Scholar 

  38. F. Jamei, H. Mirzadeh, M. Zamani, Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater. Sci. Eng. A 750, 125–131 (2019)

    Article  CAS  Google Scholar 

  39. M. Calcagnotto, D. Ponge, D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall. Mater. Trans. A 43, 37–46 (2012)

    Article  CAS  Google Scholar 

  40. G. Krauss, Steels Processing, Structure, and Performance, 2nd edn. (ASM International, Materials Park, 2015)

    Book  Google Scholar 

  41. H. Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C. De Cooman, Hot deformation behavior of V micro-alloyed TWIP steel during hot compression. Met. Mater. Int. 25, 594–605 (2019)

    Article  CAS  Google Scholar 

  42. S.W. Thompson, P.R. Howell, Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel. Mater. Sci. Technol. 8, 777–784 (1992)

    Article  CAS  Google Scholar 

  43. S. Ghaemifar, H. Mirzadeh, Refinement of banded structure via thermal cycling and its effects on mechanical properties of dual phase steel. Steel Res. Int. 89, 1700531 (2018)

    Article  CAS  Google Scholar 

  44. M.A. Mohtadi-Bonab, H. Ghesmati-Kucheki, important factors on the failure of pipeline steels with focus on hydrogen induced cracks and improvement of their resistance. Met. Mater. Int. 25, 1109–1134 (2019)

    Article  CAS  Google Scholar 

  45. A.A. Gorni, Steel Forming and Heat Treating Handbook, 2012. www.gorni.eng.br. Accessed July 2019

  46. J.H. An, J. Lee, Y.S. Kim, W.C. Kim, J.G. Kim, Effects of post weld heat treatment on mechanical and electrochemical properties of welded carbon steel pipe. Met. Mater. Int. 25, 304–312 (2019)

    Article  CAS  Google Scholar 

  47. Y. Song, E.H. Han, D. Shan, C.D. Yim, B.S. You, The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros. Sci. 65, 322–330 (2012)

    Article  CAS  Google Scholar 

  48. D.B. Hmamou, R. Salghi, A. Zarrouk, H. Zarrok, B. Hammouti, S.S. Al-Deyab, M. Bouachrine, A. Chakir, M. Zougagh, Alizarin red: an efficient inhibitor of C38 steel corrosion in hydrochloric acid. Int. J. Electrochem. Sci. 7, 5716–5733 (2012)

    Google Scholar 

Download references

Acknowledgements

Financial support by the University of Tehran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Mirzadeh, H. & Dehghanian, C. Processing Route Effects on the Mechanical and Corrosion Properties of Dual Phase Steel. Met. Mater. Int. 26, 882–890 (2020). https://doi.org/10.1007/s12540-019-00459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00459-0

Keywords

Navigation