Skip to main content
Log in

Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

An Erratum to this article was published on 10 January 2017

Abstract

The nondestructive assessment of the damage that occurs in components during service plays a key role for condition monitoring and residual life estimation of in-service components/structures. Ultrasound has been widely utilized for this; however most of these conventional methods using ultrasonic characteristics in the linear elastic region are only sensitive to gross defects but much less sensitive to micro-damage. Recently, the nonlinear ultrasonic technique, which uses nonlinear ultrasonic behavior such as higher-harmonic generation, subharmonic generation, nonlinear resonance, or mixed frequency response, has been studied as a positive method for overcoming this limitation. In this paper, overall progress in this technique is reviewed with the brief introduction of basic principle in the application of each nonlinear ultrasonic phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birks, A. S., “Nondestructive Testing Handbook 7: Ultrasonic Testing,” ASNT Handbook, 1991.

  2. Jhang, K. Y., “Applications of Nonlinear Ultrasonics to the NDE of Material Degradation,” IEEE-UFFC, Vol. 47, No. 3, pp. 540–548, 2000.

    Google Scholar 

  3. Jeong, H., Nahm, S. H., Jhang, K. Y. and Nam, Y. H., “A Nondestructive Method for Estimation of the Fracture Toughness of CrMoV Rotor Steels based on Ultrasonic Nonlinearity,” Ultrasonics, Vol. 41, No. 7, pp. 543–549, 2003.

    Article  Google Scholar 

  4. Rayleigh, L., “Theory of Sound,” 2nd ed., McMillan, Vol. II, p. 31, 1896.

    Google Scholar 

  5. Brillouin, L., “Tensors in Mechanics and Elasticity,” Academic Press, 1964.

  6. Murnaghan, F. D., “Finite Deformation of an Elastic Solid,” Wiley, 1951.

  7. Thuras, A. L., Jenkins, R. T. and O’Neil, H. T., “Extraneous Frequencies Generated in Air Carrying Intense Sound Waves,” The Journal of the Acoustical Society of America, Vol. 6, No. 3, pp. 173–178, 1935.

    Article  Google Scholar 

  8. Parker Jr., J. H., Kelly, E. F. and Bolef, D. I., “An ultrasonicoptical determination of the third order elastic constant c111 for nacl single crystals,” Applied Physics Letters, Vol. 5, No. 1, pp. 7–9, 1964.

    Article  Google Scholar 

  9. Carr, P. H., “Harmonic generation of microwave phonons in quartz,” Physical Review Letters, Vol. 13, No. 10, pp. 332–335, 1964.

    Article  Google Scholar 

  10. Thurston, R. N. and Brugger, K., “Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media,” Physical Review, Vol. 133, No. 6A, pp. A1604–A1610, 1964.

    Article  Google Scholar 

  11. Wallace, D. C., “Solid State Physics,” Academic Press, pp. 301–404, 1970.

  12. Na, J. K., Cantrell, J. H. and Yost, W. T., “Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel,” Review of Progress in QNDE, Vol. 15, pp. 1347–1351, 1996.

    Google Scholar 

  13. Hikata, A., Chick, B. B. and Elbaum, C., “Dislocatoin Contribution to the Second Harmonic Generation of Ultrasonic Waves,” Journal of Applied Physics, Vol. 36, No. 1, pp. 229–236, 1965.

    Article  Google Scholar 

  14. Hikata, A., Chick, B. B. and Elbaum, C., “Effect of Dislocations on Finite Amplitude Ultrasonic Waves in Aluminum,” Applied Physics Letters, Vol. 3, No. 11, pp. 195–197, 1963.

    Article  Google Scholar 

  15. Yost, W. T., Cantrell, J. H. and Breazeale, M. A., “Ultrasonic Nonlinearity Parameters and Third-order Elastic Constants of copper between 300 and 3°K,” Applied Physics Letters, Vol. 52, No. 1, pp. 126–128, 1981.

    Google Scholar 

  16. Truell, R., Elbaum, C. and Chick, B. B., “Ultrasonic Methods in Solid State Physics,” Academic Press, pp. 38–52, 1969.

  17. Yost, W. T. and Cantrell, J. H., “The Effects of Artificial Aging of Aluminum 2024 on its Nonlinearity Parameter,” Review of Progress in QNDE, Vol. 12, pp. 2067–2073, 1993.

    Google Scholar 

  18. Kim, J., Jacobs, L. and Qu, J., “Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves,” The Journal of the Acoustical Society of America, Vol. 120, No. 3, pp. 1266–1273, 2006.

    Article  Google Scholar 

  19. Cantrell, J. H. and Yost, W. T., “Acoustic Harmonic Generation from Fatigue-Induced Dislocation Dipoles,” Philosophical Magazine A, Vol. 69, No. 2, pp. 315–326, 1994.

    Article  Google Scholar 

  20. Hurley, D. C., Balzer, D., Purtscher, P. T. and Hollman, K. W., “Nonlinear Ultrasonic Parameter in Quenched Martensitic Steels,” Journal of Applied Physics, Vol. 83, pp. 4584–4588, 1998.

    Article  Google Scholar 

  21. Cantrell, J. H. and Yost, W. T., “Nonlinear Ultrasonic Characterization of Fatigue Microstructures,” International Journal of Fatigue, Vol. 23, pp. S487–S490, 2001.

    Article  Google Scholar 

  22. Barnard, D. J., Dace, G. E. and Buck, O., “Acoustic Harmonic Generation due to Thermal Embrittlement of Inconel 718,” Journal of Nondestructive Evaluation, Vol. 16, No. 2, pp. 67–75, 1997.

    Google Scholar 

  23. Nagy, P. B., “Fatigue Damage Assessment by Nonlinear Ultrasonic Material Characterization,” Ultrasonics, Vol. 36, No. 1–5, pp. 375–381, 1998.

    Article  Google Scholar 

  24. Frouin, J., Matikas, T. E., Na, J. K. and Sathish, S., “In situ Monitoring of Acoustic Linear and Nonlinear Behavior of Titanium Alloys during Cyclic Loading,” Proc. SPIE 3585, pp. 107–116, 1999.

  25. Cantrell, J. H., “Quantitative Assessment of Fatigue Damage Accumulation in Wavy Slip Metals from Acoustic Harmonic Generation,” Philosophical Magazine, Vol. 86, pp. 1539–1554, 2006.

    Article  Google Scholar 

  26. Sagar, S., Das, S., Parida, N. and Bhattacharya, D. K., “Nonlinear Ultrasonic Technique to Assess Fatigue Damage in Structural Steel,” Scripta Materialia, Vol. 55, pp. 199–202, 2006.

    Article  Google Scholar 

  27. Buck, O., “Nonlinear Acoustic Properties of Structural Materialsa Review,” Review of Progress in QNDE, Vol. 9, p. 1677, 1990.

    Google Scholar 

  28. Cantrell, J. H. and Yost, W. T., “Effect of Precipitate Coherency Strains on Acoustic Harmonic Generation,” Journal of Applied Physics, Vol. 81, p. 2957, 1997.

    Article  Google Scholar 

  29. Frouin, J., Sathish, S., Matikas, T. and Na, J., “Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti-6Al-4V,” Journal of Material Research Society, Vol. 14, No. 4, pp. 1295–1298, 1999.

    Article  Google Scholar 

  30. Hurley, D. C., Balzer, D. and Purtscher, P. T., “Nonlinear Ultrasonic Assessment of Precipitation Hardening in ASTM A710 Steel,” Journal of Material Research Society, Vol. 15, No. 9, pp. 2036–2042, 2000.

    Article  Google Scholar 

  31. Choi, Y. H., Kim, H. M., Jhang, K. Y. and Park, I. K., “Application of Nonlinear Acoustic Effect for Evaluation of Degradation of 2.25Cr-1Mo Steel,” Journal of KSNT, Vol. 22, No. 2, pp. 170–176, 2002.

    Google Scholar 

  32. Park, I. K., Kim, H. M. and Jhang, K. Y., “Nondestructive Evaluation of Degraded 2.25Cr-1Mo Steel and Estimation of Nonlinear Acoustic Effect using Bispectral Analysis,” ASME Pressure Vessels and Piping Division (Publication) PVP 456, pp. 65–71, 2003.

  33. Metya, A., Ghosh, M., Parida, N. and Palit Sagar, S., “Higher Harmonic Analysis of Ultrasonic Signal for Ageing Behaviour study of C-250 Grade Maraging Steel,” NDT&E International, Vol. 41, No. 6, pp. 484–489, 2008.

    Article  Google Scholar 

  34. Viktorov, I. A., “Effects of a Second Approximation in the Propagation of Waves through Solids,” Soviet Physics Acoustics, Vol. 9, pp. 242–245, 1964.

    MathSciNet  Google Scholar 

  35. Rischbieter, F., “Messung der Nichtlinearen Schallverhaltes von Aluminium mit Hilfe von Rayleighwellen,” Acustica, Vol. 18, pp. 109–112, 1967.

    Google Scholar 

  36. Vella, P. J., Padmore, T. C. and Stegeman, G. I., “Nonlinear Surface Wave Interactions: Parametric Mixing and Harmonic Generation,” Journal of Applied Physics, Vol. 45, No. 5, pp. 1993–2006, 1974.

    Article  Google Scholar 

  37. Gusev, V. E., Lauriks, W. and Thoen, J., “New Evolution Equations for the Nonlinear Surface Acoustic Waves on an Elastic Solid of General Anisotropy,” The Journal of the Acoustical Society of America, Vol. 103, No. 6, pp. 3203–3215, 1998.

    Article  Google Scholar 

  38. Kumon, R. E. and Hamilton, M. F., “Directional Dependence of Nonlinear Surface Acoustic Waves in the (001) Plane of Cubic Crystals,” The Journal of the Acoustical Society of America, Vol. 111, No. 5, Pt. 1, pp. 2060–2069, 2002.

    Article  Google Scholar 

  39. Barnard, D. J., Brasche, L. J. H., Raulerson, D. and Degtyar, A. D., “Monitoring Fatigue Damage Accumulation with Rayleigh Wave Harmonic Generation Measurements,” Review of Progress in QNDE, Vol. 22, pp. 1393–1400, 2003.

    Google Scholar 

  40. Hermann, J., Kim, J. Y., Jacobs, L., Qu, J., Littles, J. and Savage, M., “Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves,” Journal of Applied Physics, Vol. 99, No. 12, pp. 124913.1–124913.8, 2006.

    Article  Google Scholar 

  41. Shui, G., Kim, J. Y., Qu, J., Wang, Y. S. and Jacobs, L., “A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves,” NDT&E International, Vol. 41, No. 5, pp. 326–329, 2008.

    Article  Google Scholar 

  42. Kolomenskii, A. A., Lioubimov, V. A., Jerebtsov, S. N. and Schuessler, H. A., “Nonlinear surface acoustic wave pulses in solids: Laser excitation, propagation, interactions,” Review of Scientific Instruments, American Institute of Physics, Vol. 74, No. 1, pp. 448–452, 2003.

    Article  Google Scholar 

  43. Kolomenskii, A. A. and Schuessler, H. A., “Nonlinear compression of giant surface acoustic wave pulses,” Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 280, No. 3, pp. 157–161, 2001.

    Google Scholar 

  44. Remoissenet, M., “Waves Called Solitons,” Springer, 1994.

  45. Scott, A., “Nonlinear Science-Emergence and Dynamics of Coherent Structures,” Oxford University Press, 1999.

  46. Kovalev, A. S. and Sokolova, E. S., “Rayleigh Envelope Solitons near a Surface with a Nonlinear Film Coating,” Low Temperature Physics, Vol. 33, No. 4, pp. 371–376, 2007.

    Article  Google Scholar 

  47. Lomonosov, A. M., Hess, P. and Mayer, A. P., “Observation of Solitary Elastic Surface Pulses,” Physical Review Letters, Vol. 88, No. 7, pp. 076104.1–076104.4, 2002.

    Article  Google Scholar 

  48. Eckl, C., Kovalev, A. S., Mayer, A. P., Lomonosov, A. M. and Hess, P., “Solitary Surface Acoustic Waves,” Physical Review, E 70, 046604, 2004.

  49. Sadler, J. and Maev, R. Gr., “Experimental and theoretical basis of Lamb Waves and their applications in material sciences,” The Canadian Journal of Physics, Vol. 85, No. 7, pp. 707–731, 2007.

    Article  Google Scholar 

  50. Rose, J. L., “Ultrasonic Waves in Solid Media,” Cambridge University Press, 1999.

  51. Norris, A. N., “Finite-Amplitude Waves in Solids,” in: Nonlinear Acoustics, eds. M.F. Hamilton, D. T. Blackstock, Academic Press, Chap. 9, pp. 263–277, 1998.

  52. Mayer, A. P., Kumar, R., Kaushik, S. C. and Garg, H. P., “Surface Acoustic Waves in Nonlinear Elastic Media,” Physical Report, Vol. 256, No. 4, pp. 237–366, 1995.

    Article  Google Scholar 

  53. Samsonov, A. M., Dreiden, G. V., Porubov, A. V. and Semenova, I. V., “Generation and Observation of a Longitudinal Strain Soliton in a plate,” Technical Physics Letters, Vol. 22, No. 11, pp. 891–893, 1996.

    Google Scholar 

  54. Deng, M., “Cumulative Second-Harmonic Generation of Lamb Mode Propagation in a Solid Plate,” Journal of Applied Physics, Vol. 85, pp. 3051–3058, 1999.

    Article  Google Scholar 

  55. Lima, W. J. N. and Hamilton, M. F., “Finite-Amplitude Waves in Isotropic Elastic Plates,” J. Sound and Vibration, Vol. 265, No. 4, pp. 819–839, 2003.

    Article  Google Scholar 

  56. Lee, T. H., Choi, I. H. and Jhang, K. Y., “The Nonlinearity of Guided Wave in an Elastic Plate,” Modern Physics Letters B, Vol. 22, No. 11, pp. 1135–1140, 2008.

    Article  Google Scholar 

  57. Kim, J. Y., Baltazar, A., Hu, J. W. and Rokhlin, S. I., “Hysteretic Linear and Nonlinear Acoustic Responses from Pressed Interfaces,” International Journal of Solids and Structures, Vol. 43, No. 21, pp. 6436–6452, 2006.

    Article  MATH  Google Scholar 

  58. Sutin, A., “Nonlinear Acoustic Nondestructive Testing of Cracks,” Proc. 14th International Symposium on Nonlinear Acoustics, pp. 328–333, 1996.

  59. Berndt, T. P. and Green, R. E., “Feasibility Study of Nonlinear Ultrasonic Technique to Evaluate Adhesive Bonds,” Nondestructive Characterization of Material VIII, ed. R. Green, Plenum, pp. 125–131, 1998.

  60. Solodov, I. Y., “Ultrasonics of Non-linear Contacts: Propagation Reflection and NDE-applications,” Ultrasonics, Vol. 36, No. 1–5, pp. 383–390, 1998.

    Article  Google Scholar 

  61. Donskoy, D., Sutin, A. and Ekimov, A., “Nonlinear Acoustic Interaction on Contact Interfaces and its use for Nondestructive Testing,” NDT&E International, Vol. 34, No. 4, pp. 231–238, 2001.

    Article  Google Scholar 

  62. Hirsekorn, S., “Nonlinear transfer of Ultrasound by Adhesive Joints: A Theoretical Description,” Ultrasonics, Vol. 39, No. 1, pp. 57–68, 2001.

    Article  Google Scholar 

  63. Buck, O., Morris, W. L. and Richardson, J. M., “Acoustic Harmonic Generation at Unbonded Interfaces and Fatigue Cracks,” Applied Physics Letters, Vol. 33,Issue 5, pp. 371–373, 1978.

    Article  Google Scholar 

  64. Richardson, J. M., “Harmonic Generation at an Unbonded Interface-I. Planar Interface between Semi-Infinite Elastic Media,” International Journal of Engineering Science, Vol. 17, pp. 73–85, 1979.

    Article  MATH  Google Scholar 

  65. Solodov, I. Y., Asainov, A. F. and Len, K. S., “Non-linear SAW Reflection: Experimental Evidence and NDE Application,” Ultrasonics, Vol. 31, No. 2, pp. 91–96, 1993.

    Article  Google Scholar 

  66. Hirose, S. and Achenbach, J. D., “Higher Harmonics in the Far Field due to Dynamic Crack-Face Contacting,” The Journal of the Acoustical Society of America,, Vol. 93, No. 1, pp. 142–147, 1993.

    Article  Google Scholar 

  67. Rudenko, O. V. and Vu, C. A., “Nonlinear Acoustic Properties of a Rough Surface Contact and Acoustodiagnostics of a Roughness Height Distribution,” Acoustical Physics, Vol. 40, pp. 593–596, 1994.

    Google Scholar 

  68. Fassbender, S. U. and Arnold, W., “Measurement of Adhesion Strength of Bonds using Nonlinear Acoustics,” in: Thompson, D.O., Chimenti, D.E. (Eds.), Review of Progress in QNDE, Vol. 15, Plenum Press, pp. 1321–1328, 1996.

  69. Nazarov, V. E. and Sutin, A., “Nonlinear Elastic Contacts of Solids with Cracks,” The Journal of the Acoustical Society of America, Vol. 102, pp. 3349–3354, 1997.

    Article  Google Scholar 

  70. Chen, J., Jiang, W. and Shui, Y., “Observation of Nonlinear Acoustic Effects at Isotropic Solid-Solid Interfaces,” The Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 501–507, 2001.

    Article  Google Scholar 

  71. Solodov, I. Y. and Korshak, B. A., “Instability, Chaos, and “Memory” in Acoustic-Wave-Crack Interaction,” Physical Review Letters, Vol. 88, No. 1, pp. 014303–014305, 2002.

    Article  Google Scholar 

  72. Pecorari, C., “Nonlinear Interaction of Plane Ultrasonic Waves with an Interface Between Rough Surfaces in Contact,” The Journal of the Acoustical Society of America, Vol. 113, No. 6, pp. 3065–3072, 2003.

    Article  Google Scholar 

  73. Kim, N., Jhang, K. Y., Lee, T. H., Yang, S. and Chang, Y., “Reflection and Transmission of Acoustic Waves Across Contact Interface,” J. of KSNT, Vol. 28, No. 3, pp. 292–301, 2008.

    Google Scholar 

  74. Biwa, S., Nakajima, S. and Ohno, N., “On the Acoustic Nonlinearity of Solid-Solid Contact with Pressure-Dependent Interface Stiffness,” Journal of Applied Mechanics, Vol. 71, No. 4, pp. 508–515, 2004.

    Article  MATH  Google Scholar 

  75. Rokhlin, S. I. and Kim, J. Y., “In Situ Ultrasonic Monitoring of Surface Fatigue Crack Initiation and Growth from Surface Cavity,” International Journal of Fatigue, Vol. 25, No. 1, pp. 41–49, 2003.

    Article  Google Scholar 

  76. Baik, J. M. and Thompson, R. B., “Ultrasonic Scattering from Imperfect Interfaces,” Journal of Nondestructive Evaluation, Vol. 4, No. 3–4, pp. 177–196, 1984.

    Article  Google Scholar 

  77. Needleman, A., “An Analysis of Tensile Decohesion Along an Interface,” Journal of the Mechanics and Physics of Solids, Vol. 38, No. 3, pp. 289–324, 1990.

    Article  Google Scholar 

  78. Suo, Z., Ortiz, M. and Needleman, A., “Stability of Solids with Interfaces,” Journal of the Mechanics and Physics of Solids, Vol. 40, No. 3, pp. 613–640, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  79. Rokhlin, S. I. and Wang, Y. J., “Analysis of Boundary Conditions for Elastic Wave Interaction with an Interface between Two Solids,” The Journal of the Acoustical Society of America, Vol. 89, No. 2, pp. 503–515, 1991.

    Article  Google Scholar 

  80. Nagy, P. B., “Ultrasonic Classification of Imperfect Interfaces,” Journal of Nondestructive Evaluation, Vol. 11, No. 3–4, pp. 127–140, 1992.

    Article  Google Scholar 

  81. Rokhlin, S. I. (Ed.), “Special Issue on Modeling and Ultrasonic Characterization of Interfaces,” Journal of Nondestructive Evaluation, Vol. 11, No. 3–4, DOI 10.1007/BF00566402, 1992.

  82. Kim, J. Y., Baltazar, A. and Rokhlin, S. I., “Ultrasonic Assessment of Rough Surface Contact between Solids from Elastoplastic Loading-Unloading Hysteresis Cycle,” Journal of the Mechanics and Physics of Solids, Vol. 52, No. 8, pp. 1911–1934, 2004.

    Article  Google Scholar 

  83. Baltazar, A., Rokhlin, S. I. and Pecorari, C., “On the Relation between Ultrasonic Micromechanic Properties of Contacting Rough Surfaces,” Journal of the Mechanics and Physics of Solids, Vol. 50, No. 7, pp. 1397–1416, 2002.

    Article  MATH  Google Scholar 

  84. Greenwood, J. A. and Williamson, J., “Contact of Nominally Flat Surfaces,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 295, No. 1442, pp. 300–319, 1966.

    Article  Google Scholar 

  85. Morris, W. L., Buck, O. and Inman, R. V., “Acoustic Harmonic Generation due to Fatigue Damage in High-strength Aluminum,” Journal of Applied Physics, Vol. 50,Issue 11, pp. 6737–6741, 1979.

    Article  Google Scholar 

  86. Ogi, H., Hirao, M. and Aoki, S., “Noncontact Monitoring of Surface-Wave Nonlinearity for Predicting the Remaining Life of Fatigued Steels,” Journal of Applied Physics, Vol. 90, No. 1, pp. 438–442, 2001.

    Article  Google Scholar 

  87. Moussatov, A., Castagnede, B. and Gusev, V., “Frequency Up-Conversion and Frequency Down-Conversion of Acoustic Waves in Damaged Materials,” Physics Letters A, Vol. 301,Issues 3–4, pp. 281–290, 2002.

    Article  Google Scholar 

  88. Kawashima, K., Omote, R., Ito, T., Fujita, H. and Shima, T., “Nonlinear Acoustic Response Through Minute Surface Cracks: FEM Simulation and Experimentation,” Ultrasonics Vol. 40, No. 1, pp. 611–615, 2002.

    Article  Google Scholar 

  89. Ohara, Y. and Kawashima, K., “Detection of Internal Micro Defects by Nonlinear Resonant Ultrasonic Method using Water Immersion,” Japanese Journal of Applied Physics, Vol. 43, No. 5B, pp. 3119–3120, 2004.

    Article  Google Scholar 

  90. Krohn, N., Stoessel, R. and Busse, R., “Acoustic Non-Linearity for Defect Selective Imaging,” Ultrasonics, Vol. 40, No. 1, pp. 633–637, 2002.

    Article  Google Scholar 

  91. Wegner, A., Koka, A., Janser, K., Netzelmann, U., Hirsekorn, S. and Arnold, W., “Assessment of the Adhesion Quality of Fusion-Welded Silicon Wafers with Nonlinear Ultrasound,” Ultrasonics, Vol. 38, No. 1, pp. 316–321, 2000.

    Article  Google Scholar 

  92. Rothenfusser, M., Mayr, M. and Baumann, J., “Acoustic Nonlinearities in Adhesive Joints,” Ultrasonics, Vol. 38, No. 1, pp. 322–326, 2000.

    Article  Google Scholar 

  93. Korshak, B. A., Solodov, I. Y. and Ballad, E.M., “DC Effects, Sub-Harmonics, Stochasticity and “Memory” for Contact Acoustic Non-Linearity,” Ultrasonics, Vol. 40, No. 1, pp. 707–713, 2002.

    Article  Google Scholar 

  94. Solodov, I., Krohn, N. and Busse, G., “CAN: An Example of Nonclassical Acoustic Nonlinearity in Solids,” Ultrasonics, Vol. 40, No. 1–8, pp. 621–625, 2002.

    Article  Google Scholar 

  95. Moussatov, A., Gusev, A. and Castagnède, B., “Self-Induced Hysteresis for Nonlinear Acoustic Waves in Cracked Material,” Physical Review Letters, Vol. 90, No. 12, pp. 124301.1–124301.4, 2003.

    Article  Google Scholar 

  96. Ballad, E. M., Vezirov, S. Y., Pfleiderer, K., Solodov, I. and Busse, G., “Nonlinear Modulation Technique for NDE with Air-Coupled Ultrasound,” Ultrasonics, Vol. 42, No. 1–9, pp. 1031–1036, 2004.

    Article  Google Scholar 

  97. Solodov, I., Wackerl, J., Pfleiderer, K. and Busse, G., “Nonlinear Self-Modulation and Subharmonic Acoustic Spectroscopy for Damage Detection And Location,” Applied Physics Letters, Vol. 84, No. 26, pp. 5386–5388, 2004.

    Article  Google Scholar 

  98. Han, X., Li, W., Zeng, Z., Favro, L. D. and Thomas, R. L., “Acoustic Chaos and Sonic Infrared Imaging,” Applied Physics Letters, Vol. 81, No. 17, pp. 3188–3190, 2002.

    Article  Google Scholar 

  99. Yamanaka, K., Ogiso, H. and Kolosov, O., “Ultrasonic Force Microscopy for Nanometer Resolution Subsurface Imaging,” Applied Physics Letters, Vol. 64, No. 2, pp. 178–180, 1994.

    Article  Google Scholar 

  100. Kolosov, O. and Yamanaka, K., “Nonlinear Detection of Ultrasonic Vibrations in an Atomic Force Microscope,” Japanese Journal of Applied Physics Part 2 Letters, Vol. 32, No. 8A, pp. L1095–L1098, 1993.

    Article  Google Scholar 

  101. Burnham, N. A., Kulik, A. J., Gremaud, G., Gallo, R. -J. and Oulevey, F., “Scanning Local-Acceleration Microscopy,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 14, No. 2, pp. 794–799, 1996.

    Article  Google Scholar 

  102. Abdel-Rahman, E. M. and Nayfeh, A. H., “Contact Force Identification Using the Subharmonic Resonance of a Contact-Mode Atomic Force Microscopy,” Nanotechnology, Vol. 16, No. 2, pp. 199–207, 2005.

    Article  Google Scholar 

  103. Ohara, Y., Mihara, T. and Yamanaka, K., “Effect of Adhesion Force Between Crack Planes on Subharmonic and DC Responses in Nonlinear Ultrasound,” Ultrasonics, Vol. 44, pp. 194–199, 2006.

    Article  Google Scholar 

  104. Yamanaka, K., Mihara, T. and Tsuji, T., “Evaluation of Closed Cracks by Model Analysis of Subharmonic Ultrasound,” Japanese Journal of Applied Physics, Vol. 43, No. 5B, pp. 3082–3087, 2004.

    Article  Google Scholar 

  105. Ohara, Y., Yamamoto, S., Mihara, T. and Yamanaka, K., “Ultrasonic Evaluation of Closed Cracks Using Subharmonic Phased Array,” Japanese Journal of Applied Physics, Vol. 47, No. 5, pp. 3908–3915, 2008.

    Article  Google Scholar 

  106. Visscher, W. M., Migliori, A., Bell, T. M. and Reinert, R. A., “On the Normal Modes of Free Vibration of Inhomogeneous And Anisotropic Elastic Objects,” The Journal of the Acoustical Society of America, Vol. 90 No. 4, pp. 2154–2162, 1991.

    Article  Google Scholar 

  107. Van Den Abeele, K. E. -A., Carmeliet, J., Ten Cate, J. A. and Johnson, P. A., “Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy,” Research in Nondestructive Evaluation, Vol. 12, No. 1, pp. 31–42, 2000.

    Google Scholar 

  108. Johnson, P. A., “Resonant Nonlinear Ultrasound Spectroscopy,” US Patent, No. 6330827, 2001.

  109. Windels, F. and Van Den Abeele, K., “The Influence of Localized Damage in a Sample on Its Resonance Spectrum,” Ultrasonics, Vol. 42, No. 1–9, pp. 1025–1029, 2004.

    Article  Google Scholar 

  110. Payan, C., Garnier, V., Moysan, J. and Johnson, P. A., “Applying Nonlinear Resonant Ultrasound Spectroscopy to Improving Thermal Damage Assessment in Concrete,” The Journal of the Acoustical Society of America, Vol. 121, No. 4, pp. EL125–EL130, 2007.

    Article  Google Scholar 

  111. Meo, M., Polimeno, U. and Zumpano, G., “Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods,” Applied Composite Materials, Vol. 15, No. 3, pp. 115–126, 2008.

    Article  Google Scholar 

  112. Muller, M., Sutin, A., Guyer, R., Talmant, M., Laugier, P. and Johnson, P. A., “Nonlinear Resonant Ultrasound Spectroscopy (NRUS) Applied To Damage Assessment in Bone,” The Journal of the Acoustical Society of America, Vol. 118, No. 6, pp. 3946–3952, 2005.

    Article  Google Scholar 

  113. Van Den Abeele, K., “Multi-Mode Nonlinear Resonance Ultrasound Spectroscopy for Defect Imaging: an Analytical Approach for the One-Dimensional Case,” The Journal of the Acoustical Society of America, Vol. 122, No. 1, pp. 73–90, 2007.

    Article  Google Scholar 

  114. Van Den Abeele, K., Sutin, A. M., Carmeliet, J. and Johnson, P. A., “Micro-Damage Diagnostics Using Nonlinear Elastic Wave Spectroscopy (NEWS),” NDT and E International, Vol. 34, No. 4, pp. 239–248, 2001.

    Article  Google Scholar 

  115. Guyer, R. A. and Johnson, P. A., “Non-Linear Mesoscopic Elasticity: Evidence for a New Class of Materials,” Physics Today, pp. 30–36, 1999.

  116. Ostrovsky, L. A. and Johnson, P. A., “Dynamic Non-Linear Elasticity in Geomaterials,” Rivista del Nuovo Cimento, Vol. 24, No. 7, pp. 1–46, 2001.

    Google Scholar 

  117. Van Den Abeele, K., Johnson, P. A. and Sutin, A., “Non-Linear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Non-Linear Wave Modulation Spectroscopy (NWMS),” Research in Nondestructive Evaluation, Vol. 12, No. 1, pp. 17–30, 2000.

    Google Scholar 

  118. Korotkov, A. S., Slavinsky, M. M. and Sutin, A. M., “Variations of Acoustic Nonlinear Parameters with the Concentration of Defects in Steel,” Acoustical Physics, Vol. 40,Issue 1, pp. 71–74, 1994.

    Google Scholar 

  119. Sutin, A. M. and Johnson, P. A., “Nonlinear Elastic Wave Nde II. Nonlinear Wave Modulation Spectroscopy and Nonlinear Time Reversed Acoustics,” AIP Conference Proceedings, Vol. 760,Issue 1, pp. 385–392, 2005.

    Article  Google Scholar 

  120. Zagrai, A., Donskoy, D. and Lottiaux, J., “N-SCAN®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization,” AIP Conference Proceedings, Vol. 700,Issue 1, pp. 1414–1421, 2004.

    Article  Google Scholar 

  121. Straka, L., Yagodzinskyy, Y., Landa, M. and Hänninen, H., “Detection of Structural Damage of Aluminum Alloy 6082 Using Elastic Wave Modulation Spectroscopy,” NDT and E International, Vol. 41, No. 7, pp. 554–563, 2008.

    Article  Google Scholar 

  122. Zumpano, G. and Meo, M., “Damage Localization Using Transient Non-Linear Elastic Wave Spectroscopy on Composite Structures,” International Journal of Non-Linear Mechanics, Vol. 43, No. 3, pp. 217–230, 2008.

    Article  Google Scholar 

  123. Zagrai, A., Donskoy, D., Chudnovsky, A. and Golovin, E., “Micro-and Macroscale Damage Detection Using the Nonlinear Acoustic Vibro-Modulation Technique,” Research in Nondestructive Evaluation, Vol. 19, No. 2, pp. 104–128, 2008.

    Article  Google Scholar 

  124. Sheppard, K., Zagrai, A. and Donskoy, D., “A Non-Linear Acoustic, Vibro-Modulation Technique for the Detection and Monitoring of Contact-Type Defects, Including Those Associated with Corrosion,” Corrosion Reviews, Vol. 25,Issues 1–2, pp. 81–96, 2007.

    Google Scholar 

  125. Yost, W. T., “Nonlinear Ultrasonic Scanning to Detect Material Deffects,” US Patent, No. 5763642, 1998.

  126. Muller, M., Mitton, D., Talmant, M., Johnson, P. and Laugier, P., “Nonlinear Ultrasound Can Detect Accumulated Damage in Human Bone,” Journal of Biomechanics, Vol. 41, No. 5, pp. 1062–1068, 2008.

    Article  Google Scholar 

  127. Shimura, T. and Sato, T., “Ultrasonic NonLinear Parameter Measuring System,” US Patent, No. 4610155, 1986.

  128. Sasaki, H., “Ultrasonic Diagnostic Apparatus Using Non-Linear Parameters of an Organ,” US Patent, No. 4679565, 1987.

  129. Averkiou, M., “Ultrasonic Transmit Pulses for Nonlinear Ultrasonic Imaging,” US Patent, No. 5980457, 1999.

  130. Hunt, T. J., “System and Method for Non-Linear Detection of Ultrasonic Contrast Agents at Fundamental Frequency,” US Patent, No. 6497665, 2002.

  131. Connor, C. W. and Hynynen, K., “Bio-Acoustic Thermal Lensing And Nonlinear Propagation In Focused Ultrasound Surgery Using Large Focal Spots: A Parametric Study,” Physics in Medicine and Biology, Vol. 47, No. 11, pp. 1911–1928, 2002.

    Article  Google Scholar 

  132. Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A. and Sapozhnikov, O. A., “Acoustic Characterization of High Intensity Focused Ultrasound Fields: A Combined Measurement and Modeling Approach,” The Journal of the Acoustical Society of America, Vol. 124, No. 4, pp. 2406–2420, 2008.

    Article  Google Scholar 

  133. Filipczyński, L., Kujawska, T., Tymkiewicz, R and Wójcik, J., “Nonlinear and Linear Propagation of Diagnostic Ultrasound Pulses,” Ultrasound in Medicine and Biology, Vol. 25, No. 2, pp. 285–299, 1999.

    Article  Google Scholar 

  134. Lee, I. H., Son, D. S., Choi, I. H., Lee, T. H. and Jhang, K. Y., “Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter,” J. of KSNT, Vol. 27, No. 6, pp. 576–581, 2007.

    Google Scholar 

  135. Choi. I. H., Lee, J., Kwon, G. and Jhang, K. Y., “Effect of System Dependent Harmonics in the Measurement of Ultrasonic Nonlinear Parameter by using Contact Transducer,” J. of KSNT, Vol. 28, No. 4, pp. 358–363, 2008.

    Google Scholar 

  136. Murayama, R. and Ayaka, K., “Evaluation of Fatigue Specimens Using EMATs For Nonlinear Ultrasonic Wave Detection,” J. Nondestructive Evaluation, Vol. 26, pp. 115–122, 2007.

    Article  Google Scholar 

  137. Humphrey, V. F., “Nonlinear Propagation in Ultrasonic Fields: Measurements, Modelling and Harmonic Imaging,” Ultrasonics, Vol. 38, No. 1, pp. 267–272, 2000.

    Article  Google Scholar 

  138. Ulrich, T. J., Johnson, P. A. and Sutin, A. M., “Imaging nonlinear scatterers applying the time reversal mirror,” The Journal of the Acoustical Society of America, Vol. 19, No. 3, pp. 1514–1518, 2006.

    Article  Google Scholar 

  139. Sutin, A. M., TenCate, J. A. and Johnson, P. A., “Single-Channel Time Reversal in Elastic Solids,” The Journal of the Acoustical Society of America, Vol. 116, No. 5, pp. 2779–2784, 2004.

    Article  Google Scholar 

  140. Prada, C., Kerbrat, E., Cassereau, D. and Fink, M., “Time Reversal Techniques in Ultrasonic Nondestructive Testing of Scattering Media,” Inverse Problems, Vol. 18, No. 6, pp. 1761–1773, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  141. Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., Thomas, J. L. and Wu, F., “Time-Reversed Acoustics,” Reports on Progress Physics, Vol. 63, No. 12, pp. 1933–1995, 2000.

    Article  Google Scholar 

  142. Ulrich, T. J., Sutin, A. M., Guyerac, R. A. and Johnson, P. A., “Time Reversal and Non-Linear Elasticwave Spectroscopy (TR NEWS) Techniques,” International Journal of Non-Linear Mechanics, Vol. 43,Issue 3, pp. 209–216, 2008.

    Article  Google Scholar 

  143. Goursolle, T., Santos, S. D., Matar, O. B. and Calle, S., “Non-Linear Based Time Reversal Acoustic Applied to Crack Detection: Simulations and Experiments,” International Journal of Non-Linear Mechanics, Vol. 43,Issue 3, pp. 170–177, 2008.

    Article  Google Scholar 

  144. Gliozzi, A. S., Griffa, M. and Scalerandi, M., “Efficiency of Time-Reversed Acoustics for Nonlinear Damage Detection in Solids,” The Journal of the Acoustical Society of America, Vol. 120, No. 5, pp. 2506–2517, 2006.

    Article  Google Scholar 

  145. Zumpano, G. and Meo, M., “A New Nonlinear Elastic Time Reversal Acoustic Method for the Identification and Localisation of Stress Corrosion Cracking in Welded Plate-Like Structures-A Simulation Study,” International Journal of Solids and Structures, Vol. 44,Issues 11–12, pp. 3666–3684, 2007.

    Article  MATH  Google Scholar 

  146. Rabe, U., Kopycinska, M., Hirsekorn, S. and Arnold, W., “Evaluation of the Contact Resonance Frequencies in Atomic Force Microscopy as a Method for Surface Characterisation (Invited),” Ultrasonics, Vol. 40, No. 1, pp. 49–54, 2002.

    Article  Google Scholar 

  147. Cantrell, J. H. and Cantrell, S. A., “Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic Atomic Force Microscopies,” Physical Review B, Vol. 77, No. 16, p. 165409, 2008.

    Article  Google Scholar 

  148. Jhang, K. Y. and Kim, K. C., “Evaluation of Material Degradation by using Nonlinear Acoustic Effect,” Ultrasonics, Vol. 37, No. 1, pp. 39–44, 1999.

    Article  Google Scholar 

  149. Kim, K. C. and Jhang, K. Y., “Estimation of Nonlinear Acoustic Parameter Using Bispectral Analysis,” JSME International Journal Series C, Vol. 44, No. 1, pp. 20–24, 2001.

    Article  Google Scholar 

  150. Courtney, C., Drinkwater, B., Neild, S. and Wilcox, P., “Factors Affecting the Ultrasonic Intermodulation Crack Detection Technique Using Bispectral Analysis,” NDT & E International, Vol. 41, No. 3, pp. 223–234, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Young Jhang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12541-017-0018-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jhang, KY. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 10, 123–135 (2009). https://doi.org/10.1007/s12541-009-0019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-009-0019-y

Keywords

Navigation