Skip to main content
Log in

Effect of hydrophobic ionic liquid loading on characteristics and electromechanical performance of cellulose

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents the characteristics and electromechanical performance of hydrophobic ionic liquid namely; 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) loaded cellulose. Different amount of BMIPF6 is loaded in to cellulose via solution blending during its dissolution and regeneration in trifluoroacetic acid. Influence of BMIPF6 loading on characteristics, mechanical and electromechanical properties are assessed by scanning electron microscopy, X-ray diffractograms, thermogravimetric analysis, tensile test and bending displacement tests. Experimental results show that thermal degradation temperature of the cellulose tends to decrease with increasing the BMIPF6 loading, which may be due to weakening of the intra- and intermolecular hydrogen bonds of cellulose upon addition of BMIPF6. X-ray diffraction analysis showed that the raise of the BMIPF6 content resulted in enormous reduction of peak intensities at 2θ = 12° and 20.85°. This might be due to irregular structures caused by the introduction of BMIPF6 molecules in to cellulose, results in lower crystallinity as well as the mechanical properties. BMIPF6 loaded cellulose actuator shows a maximum bending displacement output of 4 mm with comparatively better durability for prolonged time under relatively low humid condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, K. J., Koh, J. S., Kim, S., Chu, W. S., Hong, Y. and Ahn, S. H., “Review of Manufacturing Process for Soft Biomimetic Robots,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 171–181, 2009.

    Article  Google Scholar 

  2. Kim, Y., Kim, P., Lee, J. and Seok, J., “Characterization and Parameter Optimization of a Microcellular Polypropylene Electret under an External Inertial Load,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 97–106, 2009.

    Article  Google Scholar 

  3. Otero, T. F., Rodriguez, J., Angulo, E. and Santamaria, C., “Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material — artificial muscle,” J. Electroanal. Chem., Vol. 341, pp. 369–375, 1992.

    Article  Google Scholar 

  4. Lughmani, W. A., Jho, J. Y., Lee, J. Y. and Rhee, K., “Modeling of Bending Behavior of IPMC Beams Using Concentrated Ion Boundary Layer,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 131–139, 2009.

    Article  Google Scholar 

  5. Wang, T. T., Herbert, J. M. and Glass, A. M., “The Applications of ferroelectric polymers,” Chapman and Hall, London, 1988.

  6. Broadhurst, M. G., Davis, G. T., McKinney, J. E. and Collins, R. E., “Piezoelectricity and pyroelectricity in polyvinylidene fluoride—A model,” J. Appl. Phy. C., Vol. 49, pp. 4992–4997, 1978.

    Article  Google Scholar 

  7. Kepler, R. G. and Anderson, R. A., “Piezoelectricity and pyroelectricity in polyvinylidene fluoride,” J. Appl. Phy., Vol. 49, pp. 4490–4994, 1978.

    Article  Google Scholar 

  8. Kim, J., Yun, S. and Ounaeis, Z., “Discovery of cellulose as smart material,” Macromolecules, Vol. 39, No. 12, pp. 4202–4206, 2006.

    Article  Google Scholar 

  9. Yun, S., Kim, J. and Lee, K.-S., “Evaluation of Cellulose Electro-Active Paper Made by Tape Casting and Zone Stretching Methods,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 6, pp. 987–990, 2010.

    Article  Google Scholar 

  10. Huddleston, J. G. and Rogers, R. D., “Room temperature ionic liquids as novel media for clean liquid-liquid extraction,” Chem. Commun., No. 16, pp. 1765–1766, 1998.

  11. Dickinson, E. V., Williams, M. E., Hendrickson, S. M., Masui, H. and Murray, R. W., “Hybrid Redox Polyether Melts Based on Polyether-Tailed Counterions,” J. Am. Chem. Soc., Vol. 121, No. 4, pp. 613–616, 1999.

    Article  Google Scholar 

  12. Nakashima, T. and Kimuzuka, N., “Vesicles in Salt: Formation of Bilayer Membranes from Dialkyldimethylammonium Bromides in Ether-containing Ionic Liquids,” Chem. Lett., No. 10, pp. 1018–1019, 2002.

  13. Wen, L., Fadeev, A. G., Baohua, Q., Smela, E., Mattes, B. R., Ding, J., Spinks, G. M., Jakub, M., Zhou, D., Gordon, G. W., Douglas, R. M., Stewart, A. F. and Maria, F., “Use of ionic liquids for π-conjugated polymer electrochemical devices,” Science, Vol. 297, No. 5583, pp. 983–987, 2002.

    Article  Google Scholar 

  14. Sun, H., Linpo, Y., Xianbo, J., Xiaohong, H., Wang, D. and Chen, G. Z., “Unusual anodic behavior of chloride ion in 1-butyl-3methylimidazolium hexafluorophosphate,” Electrochem. Commun., Vol. 7, No. 7, pp. 685–691, 2005.

    Article  Google Scholar 

  15. Wilkis, J. S. and Zaworotko, M. J., “Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids,” J. Chem. Soc. Chem. Commun., Vol. 23, No. 43, pp. 965–966, 1992.

    Article  Google Scholar 

  16. McEwen, A. B., Helen, L. N., LeCompte, K. and Goldman, J. L., “Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications,” J. Electrochem. Soc., Vol. 146, No. 5, pp. 1687–1695, 1999.

    Article  Google Scholar 

  17. Scott, M. P., Rahman, M. and Brazel, C. S., “Application of ionic liquids as low-volatility plasticizers of PMMA,” Euro. Polym. J., Vol. 39, No. 10, pp. 1947–1953, 2003.

    Article  Google Scholar 

  18. Nanbu, N., Sasaki, Y. and Kitamura, F., “In situ FT-IR spectroscopic observation of a room-temperature molten salt gold electrode interphase,” Electrochem. Commun., Vol. 5, No. 5, pp. 383–387, 2003.

    Article  Google Scholar 

  19. Jiang, J., Gao, D., Li, Z. and Su, G., “Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in roomtemperature ionic liquids,” React. Funct. Polym., Vol. 66, No. 10, pp. 1141–1148, 2006.

    Article  Google Scholar 

  20. Salmen, N. L. and Back, E. L., “The influence of water on the glass phase transition temperature of cellulose,” TAPPI, Vol. 60, No. 12, pp. 137–140, 1977.

    Google Scholar 

  21. Ludwik, S., Adam, R. and Jadwiga, T. G., “Glass transition temperature and thermal decomposition of cellulose powder,” Cellulose, Vol. 15, No. 3, pp. 445–451, 2008.

    Article  Google Scholar 

  22. Holbrey, J. D., Reichert, W. M., Swatloski, R. P., Broker, G. A., Pinter, W. R., Seddon, K. R. and Rogers, R. D., “Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions,” Green Chem., Vol. 4, No. 5, pp. 407–413, 2002.

    Article  Google Scholar 

  23. Marrinan, H. J. and Mann, J., “Infrared spectra of the crystalline modification of cellulose,” J. Polym. Sci., Vol. 21, pp. 301–311, 1956.

    Article  Google Scholar 

  24. Jung, H. Z., Benerito, R. R., Berni, R. J. and Mitcham, D., “Effect of low temperatures on polymorphic structures of cotton cellulose,” J. Appl. Polym. Sci., Vol. 21, No. 7, pp. 1981–1988, 1977.

    Article  Google Scholar 

  25. Akira, I., “Material Science of Cellulose,” Tokyo University Press, Tokyo, p. 8, 2001.

    Google Scholar 

  26. Rao, S. S., “Mechanical Vibrations: 2nd Ed.,” Addison-Wesley, p. 398, 1987.

  27. Tahhan, M., Truong, V. T., Spinks, G. M. and Wallace, G. G., “Carbon nanotube and polyaniline composite actuators,” Smart Mater. Struct., Vol. 12, No. 4, pp. 626–632, 2003.

    Article  Google Scholar 

  28. Yun, S. R. and Kim, J., “A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose,” Smart Mater. Struct., Vol. 16, No. 4, pp. 1471–1476, 2007.

    Article  MathSciNet  Google Scholar 

  29. Kim, J., Wang, N., Yi, C., Lee, S. K. and Yun, G. Y., “Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate,” Cellulose, Vol. 14, No. 3, pp. 217–223, 2007.

    Article  Google Scholar 

  30. Kim, J., Wang, N., Yi, C. and Yun, G. Y., “An electro-active paper actuator made with lithium chloride/cellulose films: effects of glycerol content and film thickness,” Smart Mater. Struct., Vol. 16, No. 5, pp. 1564–1569, 2007.

    Article  Google Scholar 

  31. Kim, J., Wang, N. and Yi, C., “Effect of chitosan and ions on actuation behavior of cellulose-chitosan laminated films as electro-active paper,” Cellulose, Vol. 14, No. 5, pp. 439–445, 2007.

    Article  Google Scholar 

  32. Cai, Z. and Kim, J., “Characteristics and performance of electroactive paper actuator made with cellulose/ polyurethane semi-interpenetrating polymer networks,” J. Appl. Polym. Sci., Vol. 109, No. 6, pp. 3689–3695, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadeva, S.K., Kim, J. & Jo, C. Effect of hydrophobic ionic liquid loading on characteristics and electromechanical performance of cellulose. Int. J. Precis. Eng. Manuf. 12, 47–52 (2011). https://doi.org/10.1007/s12541-011-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-011-0006-y

Keywords

Navigation