Skip to main content
Log in

Chemo-mechanical manufacturing of fused silica by combining ultrasonic vibration with fixed-abrasive pellets

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

An Erratum to this article was published on 02 May 2014

Abstract

Vibration-assisted grinding, in which harder abrasives than materials to be machined are employed, has been a viable and effective approach to increasing material removal rate (MRR) and/or reducing surface roughness of ground surfaces. We transfer this ideology to fused silica polishing by incorporating ultrasonic vibration into recently developed fixed-abrasive pellets in an attempt to enhance MRR and/or to improve manufactured surface quality. A prototype ultrasonic vibrator, the heart of the polishing head, was designed and the related experimental work was performed on an in-house built setup in conjunction with the constructed head. The vibrator is devised for the generation of 2-D tool path despite using only one actuator in lieu of two actuators in conventional 2-D ultrasonic machining systems. We then combined the ultrasonic vibration with fixed abrasive polishing pellets to machine fused silica glass. Machining experiments reveal that MRR is considerably increased up to >50% upon the introduction of ultrasonic vibration (UV) whilst surface roughness is not degraded appreciably. It was also noted that a overwhelmingly greater deal of polishing debris was dispelled during ultrasonic vibration assisted polishing than conventional bound-abrasive polishing, which may account for the greater MRR in UV assisted polishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. French, R. and Tran, H., “Immersion lithography: Photomask and wafer-level materials,” Annu. Rev. Mater. Res., Vol. 39, pp. 93–126, 2009.

    Article  Google Scholar 

  2. Campbell, J. H., Hawley-Fedder, R. A., Stolz, C. J., Menapace, J. A., Borden, M. R., Whitman, P. K., Yu, J., Runkel, M. J., Riley, M. O., Feit, M. D., and Hackel, R. P., “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE, Vol. 5341, pp. 84–101, 2004.

    Article  Google Scholar 

  3. Choi, J. H., Zoulkarneev, A., Kim, S., Baik, C., Yang, H., Park, S., Suh, H., Kim, U., Son, H., Lee, J., Kim, M., Kim, J., and Kim, K., “Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates,” Nature Photonics, Vol. 5, No. 12, pp. 763–769, 2011.

    Article  Google Scholar 

  4. Bloembergen, N., “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt., Vol. 12, No. 4, pp. 661–664, 1973.

    Article  Google Scholar 

  5. Parham, T. G., Stolz, C., Baisden, T., Kozlowski, M., Kiikka, C., and Aikens, D. M., “Developing optics finishing technologies for the national ignition facility,” ICF Quarterly Report, Vol. 9, pp. 177–191, 1999.

    Google Scholar 

  6. Tesar, A. A., Fuchs, B. A., and Hed, P. P., “Examination of the polished surface character of fused silica,” Appl. Opt., Vol. 31, No. 34, pp. 7164–7172, 1992.

    Article  Google Scholar 

  7. Ando, M., Negishi, M., Takimoto, M., Deguchi, A., and Nakamura, N., “Super-smooth polishing on aspherical surfaces,” Nanotechnology, Vol. 6, No. 4, pp. 111–120, 1995.

    Article  Google Scholar 

  8. Leistner, A. J., Thwaite, E. G., Lesha, F., and Bennett, J. M., “Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces,” Appl. Opt., Vol. 31, No. 10, pp. 1472–1482, 1992.

    Article  Google Scholar 

  9. Hed, P. P., “Calculations of material removal, removal rate and Preston coefficient in continuous lapping/polishing machines,” Lawrence Livermore National Laboratory Report, UCRL-ID-115321, 1993.

  10. Tesar, A. and Fuchs, B. A., “Removal rates of fused silica with cerium oxide/pitch polishing,” Proc. SPIE, Vol. 1531, pp. 80–90, 1992.

    Article  Google Scholar 

  11. Golini, D. and Jacobs, S. D., “Physics of loose abrasive microgrinding,” Appl. Opt., Vol. 30, No. 19, pp. 2761–2777, 1991.

    Article  Google Scholar 

  12. Evans, C. J., Paul, E., Dornfeld, D., Lucca, D. A., Byrne, G., Tricard, M., Klocke, F., Dambon, O., and Mullany, B. A., “Material removal mechanisms in lapping and polishing,” CIRP Ann., Vol. 52, No. 2, pp. 611–633, 2003.

    Article  Google Scholar 

  13. Desai, J. N., “Advances and processes in precision glass polishing techniques,” Report of the University of Florida, 2009.

  14. Berggren, R. R. and Schmell, R. A., “Pad polishing for rapid production of large flats,” Proc. SPIE, Vol. 3134, pp. 252–257, 1997.

    Article  Google Scholar 

  15. Li, Y., Hou, J., Xu, Q., Wang, J., Yang, W., and Guo, Y., “The characteristics of optics polished with a polyurethane pad,” Opt. Express, Vol. 16, No. 14, pp. 10285–10293, 2008.

    Article  Google Scholar 

  16. Mun, S.-D., “Micro machining of high-hardness materials using magnetic abrasive grains,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 5, pp. 763–770, 2010.

    Article  Google Scholar 

  17. Kordonski, W. I. and Jacobs, S. D., “Magnetorheological finishing,” Int. J. Mod. Phys. B, Vol. 10, No. 23–24, pp. 2837–2848, 1996.

    Article  Google Scholar 

  18. Mirian, S., Safavi, M., Fadaei, A., Salimi, M., and Farzin, M., “Improving the quality of surface in polishing process with the magnetic abrasive powder polishing (MAPP) by use of ultrasonic oscillation of work-piece on a CNC table,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 275–284, 2011.

    Article  Google Scholar 

  19. Walker, D., Brooks, D., King, A., Freeman, R., Morton, R., McCavana, G., and Kim, S.-W., “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express, Vol. 11, No. 8, pp. 958–964, 2003.

    Article  Google Scholar 

  20. Kulawski, M., Henttinen, K., Suni, I., Weimar, F., and Makinen, J., “A novel CMP process on fixed abrasive pads for the manufacturing of highly planar thick film SOI substrates,” Mat. Res. Soc. Proc., Vol. 767, pp. 133–139, 2003.

    Google Scholar 

  21. Ochiai, K., Nanbu, Y., Tanaka, F., Sasaki, T., and Utsunomiya, Y., “Study on high-removal-rate mirror grinding of optical glass,” Research Report of Saitama Industrial Technology Center, Vol. 8, pp. 78–83, 2009. (in Japanese)

    Google Scholar 

  22. Bifano, T. G., Dow, T. A., and Scattergood, R. O., “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME J. Eng. Ind., Vol. 113, No. 2, pp. 184–189, 1991.

    Article  Google Scholar 

  23. Ngoi, B. and Sreejith, P., “Ductile regime finish machining-a review,” Int. J. Adv. Manuf. Technol., Vol. 16, No. 8, pp. 547–550, 2000.

    Article  Google Scholar 

  24. Biffano, T., DePiero, D. K., and Golini, D., “Chemomechanical effects in ductile-regime machining of glass,” Prec. Eng., Vol. 15, No. 4, pp. 238–247, 1993.

    Article  Google Scholar 

  25. Brehl, D. E. and Dow, T. A., “Review of vibration-assisted machining,” Prec. Eng., Vol. 32, No. 3, pp. 153–172, 2008.

    Article  Google Scholar 

  26. Markov, A. I., “Ultrasonic machining of intractable materials,” (Mashgiz, Moscow, U.S.S.R.,) 1962 (in Russian) [translated by Scripta Technica Ltd., edited by Neppiras, E. A., Iliffe Books Ltd.] Chapter 2, 1966.

  27. Guzzo, P. L., Shinohara, A. H., and Raslan, A. A., “A comparative study on ultrasonic mchining of hard and brittle materials,” J. Braz. Soc. Mech. Sci. Eng., Vol. 26, No. 1, pp. 56–61, 2004.

    Article  Google Scholar 

  28. Pei, Z. J. and Ferreira, P. M., “Modeling of ductile-mode material removal in rotary ultrasonic machining,” Int. J. Mach. Tool. Manuf., Vol. 38, No. 10–11, pp. 1399–1418, 1998.

    Article  Google Scholar 

  29. Moriwaki, T., Shamoto, E., and Inoue, K., “Ultraprecision ductile cutting of glass by applying ultrasonic vibration,” Ann. CIRP, Vol. 41, No. 1, pp. 141–144, 1992.

    Article  Google Scholar 

  30. Zhou, M., Wang, X. J., Ngoi, B., and Gan, J., “Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration,” J. Mater. Process. Technol., Vol. 121, No. 2–3, pp. 243–251, 2002.

    Article  Google Scholar 

  31. Qu, W., Wang, K., Miller, M. H., Huang, Y., and Chandra, A., “Using vibration-assisted grinding to reduce subsurface damage,” Prec. Eng., Vol. 24, No. 4, pp. 329–337, 2000.

    Article  Google Scholar 

  32. Nath, C. and Rahman, M., “Effect of machining parameters in ultrasonic vibration cutting,” Int. J. Mach. Tool. Manuf., Vol. 48, No. 9, pp. 965–974, 2008.

    Article  Google Scholar 

  33. Zhou, M., Ngoi, B., Yusoff, M., and Wang, X. J., “Tool wear and surface finish in diamond cutting of optical glass,” J. Mater. Process. Technol., Vol. 174, No. 1–3, pp. 29–33, 2006.

    Article  Google Scholar 

  34. Egashira, K. and Masuzawa, T., “Microultrasonic machining by the application of workpiece vibration,” Ann. CIRP, Vol. 48, No. 1, pp. 131–134, 1999.

    Article  Google Scholar 

  35. Tsai, M.-Y. and Yang, W.-Z., “Combined ultrasonic vibration and chemical mechanical polishing of copper substrates,” Int. J. Mach. Tool. Manuf., Vol. 53, No. 1, pp. 69–76, 2012.

    Article  Google Scholar 

  36. Xu, W., Lu, X., Pan, G., Lei, Y., and Luo, J., “Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate,” Appl. Suf. Sci., Vol. 256, No. 12, pp. 3936–3940, 2010.

    Article  Google Scholar 

  37. Tso, P.-L. and Tung, C., “Study on ultrasonic-assisted chemical mechanical polishing,” Int. J. Abra. Technol., Vol. 4, No. 2, pp. 132–139, 2011.

    Article  Google Scholar 

  38. Gillman, B. E. and Jacobs, S. D., “Bound-abrasive polishers for optical glass,” Appl. Opt., Vol. 37, No. 16, pp. 3498–3505, 1998.

    Article  Google Scholar 

  39. Bastawros, A., Chandra, A., Guo, Y., and Yan, B., “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electro. Mater., Vol. 31, No. 10, pp. 1022–1031, 2002.

    Article  Google Scholar 

  40. Wang, C., Sherman, P., Chandra, A., and Dornfeld, D., “Pad surface roughness and slurry particle size distribution effects on material removal rate in chemical mechanical planarization,” Ann. CIRP, Vol. 54, No. 1, pp. 309–312, 2005.

    Article  Google Scholar 

  41. Luo, J. and Dornfeld, D. A., “Optimization of CMP from the viewpoint of consumable effects,” J. Electrochem. Soc., Vol. 150, No. 12, pp. G807–G815, 2003.

    Article  Google Scholar 

  42. Kachalov, N. N., “Technology of grinding and polishing sheet glass,” (Acad. Sci., Moscow-Leningrad), 1958 (in Russian) [translated by Mao, W. and Yang, Y., China Industry Press, Peking] Chapter 4, 1965. (in Chinese)

    Google Scholar 

  43. Wang, L., Zhang, K., Song, Z., and Feng, S., “Ceria concentration effect on chemical mechanical polishing of optical glass,” Appl. Surf. Sci., Vol. 253, No. 11, pp. 4951–4954, 2007.

    Article  Google Scholar 

  44. Luo, J. and Dornfeld, D. A., “Material removal regions in chemical mechanical planarization for submicron integrated circuit fabrication: Coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area,” IEEE Trans. Semicond. Manuf., Vol. 16, No. 1, pp. 45–56, 2003.

    Article  Google Scholar 

  45. Bulsara, V. H., Ahn, Y., Chandrasekar, S., and Farris, T. N., “Mechanics of polishing,” Trans. ASME: J. Appl. Mech., Vol. 65, No. 2, pp. 410–416, 1998.

    Article  Google Scholar 

  46. Gagliardi, J., Zagrebelny, A., Joseph, B., and Zazzera, L., “Advancements for sub 45 nm fixed abrasive STI CMP, NCCAVS CMP Users Group at Semicon West Moscone Center,” San Francisco, C.A., USA, 2007.

    Google Scholar 

  47. Rogov, V. V., Filatov, Y., Kottler, W., and Sobol, V. P., “New technology of precision polishing of glass optics,” Opt. Eng., Vol. 40, No. 8, pp. 1641–1645, 2001.

    Article  Google Scholar 

  48. Filatov, Y. D., Filatov, O., Y., Monteil, G., Heisel, U., and Storchak, M., “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng., Vol. 50, No. 6, pp. 063401, 2011.

    Article  Google Scholar 

  49. Zhou, L., Eda, H., Shimizu, J., Kamiya, S., Iwase, H., Kimura, S., and Sato, H., “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP, Vol. 55, No. 1, pp. 313–316, 2006.

    Article  Google Scholar 

  50. Zhou, L., Shiina, T., Qiu, Z., Shimizu, J., Yamamoto, T., and Tashiro, T., “Research on chemo-mechanical grinding of large size quartz glass substrate,” Prec. Eng., Vol. 33, No. 4, pp. 499–504, 2009.

    Article  Google Scholar 

  51. Suwabe, H. and Ishikawa, K., “Nontraditional lapping processes: in Handbook of Lapping and Polishing,” CRC Press, Chapter 4.3, 2007.

  52. Thoe, T. B., Aspinwall, D. K., and Wise, M., “Review on ultrasonic machining,” Int. J. Mach. Tool. Manuf., Vol. 38, No. 4, pp. 239–255, 1998.

    Article  Google Scholar 

  53. Shamoto, E., Suzuki, N., Tsuchiya, E., Hori, Y., Inagaki, H., and Yoshino, K., “Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces,” Ann. CIRP, Vol. 54, No. 1, pp. 321–324, 2005.

    Article  Google Scholar 

  54. Shamoto, E. and Moriwaki, T., “Study on elliptical vibration cutting,” Ann. CIRP, Vol. 43, No. 1, pp. 35–38, 1994.

    Article  Google Scholar 

  55. Ahn, J.-H., Lim, H.-S., and Son, S.-M., “Improvement of micromachining accuracy by 2-Dimensional vibration cutting,” Proc. ASPE, Vol. 20, pp. 150–153, 1999.

    Google Scholar 

  56. Brinksmeier, E. and Glabe, R., “Elliptical vibration cutting of steel with diamond tools,” Proc. ASPE, Vol. 20, pp. 163–166, 1999.

    Google Scholar 

  57. Li, X. and Zhang, D., “Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting,” J. Mater. Process. Technol., Vol. 180, No. 103, pp. 91–95, 2006.

    Article  Google Scholar 

  58. Timoshenko, S., “Vibration problems in engineering, second edition,” D. Van Nostrand Company, Inc., New York, USA, Chapter 6, 1937.

    Google Scholar 

  59. Wu, Y., Fan, Y., Kato, M., Kuriyagawa, T., Syoji, K., and Tachibana, T., “Development of an ultrasonic elliptic-vibration shoe centerless grinding technique,” J. Mater. Process. Technol., Vol. 155–156, pp. 1780–1787, 2004.

    Article  Google Scholar 

  60. Preston, F. W., “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol., Vol. 11, pp. 214–256, 1927.

    Google Scholar 

  61. Kasai, T. and Yasunaga, N., “Precision grinding for high additional value,” Nikkan Kogyo Shimbun, Ltd., Tokyo, Japan, Chapter 1.1, 2010. (in Japanese)

    Google Scholar 

  62. Suratwala, T. I., Feit, M. D., and Steele, W. A., “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Amer. Ceram. Soc., Vol. 93, No. 5, pp. 1326–1340, 2010.

    Google Scholar 

  63. Rajendran, A., Takahashi, Y., Koyama, M., Kubo, M., and Miyamoto, A., “Tight-binding quantum chemical molecular dynamics simulation of mechano-chemical reactions during chemical-mechanical polishing process of SiO2 surface by CeO2 particle,” Appl. Surf. Sci., Vol. 244, No. 1–4, pp. 34–38, 2005.

    Article  Google Scholar 

  64. Cook, L. M., “Chemical processes in glass polishing,” J. Non-Crystal. Solids, Vol. 120, No. 1–3, pp. 152–171, 1990.

    Article  Google Scholar 

  65. Hoshino, T., Kurata, Y., Terasaki, Y., and Susa, K., “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Crystal. Solids, Vol. 283, No. 103, pp. 129–136, 2001.

    Article  Google Scholar 

  66. Yu, Z., Hu, X., and Rajurkar, K. P., “Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon,” Ann. CIRP, Vol. 55, No. 1, pp. 201–204, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguo Li.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12541-014-0423-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wu, Y., Zhou, L. et al. Chemo-mechanical manufacturing of fused silica by combining ultrasonic vibration with fixed-abrasive pellets. Int. J. Precis. Eng. Manuf. 13, 2163–2172 (2012). https://doi.org/10.1007/s12541-012-0287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0287-9

Keywords

Navigation