Skip to main content
Log in

Heterogeneous porous scaffold design using the continuous transformations of triply periodic minimal surface models

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A novel and efficient method for designing a heterogeneous porous scaffold with continuous gradients in internal pore architectures is presented. Our method uses a hybrid method which combines radial basis functions (RBFs) interpolation scheme with the triply periodic minimal surface (TPMS) transformation strategy. In the method, a three-dimensional (3D) scalar field is defined implicitly as a single smooth architecture distribution function fitted to the given discrete architecture types of some chosen control points. Robust and efficient methods for fitting and evaluating RBFs allow us to design a variety of heterogeneous scaffolds with accurately controlled architecture distribution while maintaining fully interconnected pore networks. Experimental results show that the proposed scaffold design method has the potential benefits for precisely controlling the internal pore architectures within an arbitrarily shaped scaffold while preserving the advantages of distance field and TPMS-based pore architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ϕ p (r):

P-surface equation

ϕ G (r):

G-surface equation

ϕ D (r):

D-surface equation

ϕ I-WP (r):

IWP-surface equation

C:

level constant

µ:

blending parameter

ϕ G→D (µ):

Intermediate surface between G-surface and D-surface

ϕ D→P (µ):

Intermediate surface between D-surface and P-surface

ϕ P→IWP (µ):

Intermediate surface between P-surface and I-WP surface

References

  1. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P., and Langer, R., “Laminated three-dimensional biodegradable foams for use in tissue engineering,” Biomaterials, Vol. 14, No. 5, pp. 323–330, 1993.

    Article  Google Scholar 

  2. Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., and Langer, R., “Novel approach to fabricate porous sponges of poly (D, Llactic-co-glycolic acid) without the use of organic solvents,” Biomaterials, Vol. 17, No. 14, pp. 1417–1422, 1996.

    Article  Google Scholar 

  3. Lo, H., Ponticiello, M. S., and Leong, K. W., “Fabrication of controlled release biodegradable foams by phase separation,” Tissue Eng., Vol. 1, No. 1, pp. 15–28, 1995.

    Article  Google Scholar 

  4. Sill, T. J. and von Recum, H. A., “Electrospinning: Applications in drug delivery and tissue engineering,” Biomaterials, Vol. 29, No. 13, pp. 1989–2006, 2008.

    Article  Google Scholar 

  5. Martins, A., Duarte, A. R., Faria, S., Marques, A. P., Reis, R. L., and Neves, N. M., “Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality,” Biomaterials, Vol. 31, No. 22, pp. 5875–5885, 2010.

    Article  Google Scholar 

  6. Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., and Feinberg, S. E., “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering,” Biomaterials, Vol. 26, No. 23, pp. 4817–4827, 2005.

    Article  Google Scholar 

  7. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., and Tan, K. C., “Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling,” J. Biomed. Mater. Res., Vol. 55, No. 2, pp. 203–216, 2001.

    Article  Google Scholar 

  8. Giordano, R. A., Wu, B. M., Borland, S. W., Cima, L. G., Sachs, E. M., and Cima, M. J., “Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing,” J. Biomat. Sci. Polym. E., Vol. 8, No. 1, pp. 63–75, 1996.

    Article  Google Scholar 

  9. Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C., and Mikos, A. G., “Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth,” J. Biomed. Mater. Res. B Appl. Biomater., Vol. 64, No. 2, pp. 65–69, 2003.

    Article  Google Scholar 

  10. Hollister, S. J., “Porous scaffold design for tissue engineering,” Nat. Mater., Vol. 4, No. 7, pp. 518–524, 2005.

    Article  Google Scholar 

  11. Fang, Z., Starly, B., and Sun, W., “Computer-aided characterization for effective mechanical properties of porous tissue scaffolds,” Comput. Aided Design, Vol. 37, No. 1, pp. 65–72, 2005.

    Article  Google Scholar 

  12. Starly, B., Lau, W., Bradbury, T., and Sun W., “Internal architecture design and freeform fabrication of tissue replacement structures,” Comput. Aided Design, Vol. 38, No. 2, pp. 115–124, 2006.

    Article  Google Scholar 

  13. Woodfield, T. B. F., Malda, J., de Wijn, J., Peters, F., Riesle, J., and van Blitterswijk, C. A., “Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique,” Biomaterials, Vol. 25, No. 18, pp. 4149–4161, 2004.

    Article  Google Scholar 

  14. Sun, W., Starly, B., Nam, J., and Darling, A., “Bio-CAD modeling and its applications in computer-aided tissue engineering,” Comput. Aided Design, Vol. 37, No. 11, pp. 1097–1114, 2005.

    Article  Google Scholar 

  15. Wettergreen, M. A., Bucklen, B. S., Starly, B., Yuksel, E., Sun, W., and Liebschner, M. A. K., “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Comput. Aided Design, Vol. 37, No. 11, pp. 1141–1149, 2005.

    Article  Google Scholar 

  16. Tuan, H. S. and Hutmacher, D. W., “Application of micro CT and computation modeling in bone tissue engineering,” Comput. Aided Design, Vol. 37, No. 11, pp. 1151–1161, 2005.

    Article  Google Scholar 

  17. Naing, M. W., Chua, C. K., Leong, K. F., and Wang, Y., “Fabrication of customized scaffolds using computer-aided design and rapid prototyping techniques,” Rapid Prototyping J., Vol. 11, No. 4, pp. 249–259, 2005.

    Article  Google Scholar 

  18. Wang, C. S., Wang, W. H., and Lin, M. C., “STL rapid prototyping bio-CAD model for CT medical image segmentation,” Comput. Ind., Vol. 61, No. 3, pp. 187–197, 2010.

    Article  Google Scholar 

  19. Yoo, D. J., “Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 61–71, 2011.

    Article  MathSciNet  Google Scholar 

  20. Yoo, D. J., “Porous scaffold design using the distance field and triply periodic minimal surface models,” Biomaterials, Vol. 32, No. 31, pp. 7741–7754, 2011.

    Article  Google Scholar 

  21. Yoo, D. J., “Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions,” Med. Eng. Phys., Vol. 34, No. 5, pp. 625–639, 2012.

    Article  Google Scholar 

  22. Yoo, D. J., “Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 527–537, 2012.

    Article  Google Scholar 

  23. Hyde, S. T. and Oguey, C., “From 2D Hyperbolic forests to 3D Euclidean entangled thickets,” The European Physical Journal B, Vol. 16, No. 4, pp. 613–630, 2000.

    Article  Google Scholar 

  24. Nesper, R. and Leoni, S., “On tilings and patterns on Hyperbolic surfaces and their relation to structural chemistry,” ChemPhysChem, Vol. 2, No. 7, pp. 413–422, 2001.

    Article  Google Scholar 

  25. Lord, E. A. and Mackay, A. L., “Periodic minimal surfaces of cubic symmetry,” Curr. Sci., Vol. 85, No. 3, pp. 346–362, 2003.

    MathSciNet  Google Scholar 

  26. Wohlgemuth, M., Yufa, N., Hoffman, J., and Thomas E. L., “Triply periodic bicontinuous cubic microdomain morphologies by symmetries,” Macromolecules, Vol. 34, No. 17, pp. 6083–6089, 2001.

    Article  Google Scholar 

  27. Gandy, P. J. F., Bardhan, S., Mackay, A. L., and Klinowski, J., “Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces,” Chem. Phys. Lett., Vol. 336, No. 3, pp. 187–195, 2001.

    Article  Google Scholar 

  28. Wang, Y., “Periodic surface modeling for computer aided nano design,” Comput. Aided Design, Vol. 39, No. 3, pp. 179–189, 2007.

    Article  Google Scholar 

  29. Jung, Y., Chu, K. T., and Torquato, S., “A variational level set approach for surface area minimization of triply-periodic surfaces,” J. Comput. Phys., Vol. 223, No. 2, pp. 711–730, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  30. Yoo, D. J., “Filling holes in large polygon models using an implicit surface scheme and the domain decomposition method,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 1, pp. 3–10, 2007.

    Google Scholar 

  31. Yoo, D. J., “Three-dimensional morphing of similar shapes using a template mesh,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 1, pp. 55–66, 2009.

    Article  Google Scholar 

  32. Yoo, D. J., “Rapid surface reconstruction from a point cloud using the least-squares projection,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 2, pp. 273–283, 2010.

    Article  Google Scholar 

  33. Yoo, D. J. and Kwon, H. H., “Shape reconstruction, shape manipulation, and direct generation of input data from point clouds for rapid prototyping,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 1, pp. 103–113, 2009.

    Article  Google Scholar 

  34. Yoo, D. J., “Three-dimensional human body model reconstruction and manufacturing from CT medical image data using a heterogeneous implicit solid based approach,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 293–301, 2011.

    Article  Google Scholar 

  35. Yoo, D. J., “Three-dimensional surface reconstruction of human bone using a B-spline based interpolation approach,” Comput. Aided Design, Vol. 43, No. 8, pp. 934–947, 2011.

    Article  MathSciNet  Google Scholar 

  36. Fogden, A. and Hyde, S. T., “Continuous transformations of cubic minimal surfaces,” Eur. Phys. J. B, Vol. 7, No. 1, pp. 91–104, 1999.

    Article  Google Scholar 

  37. Schroder, G. E., Fogden, A., and Hyde, S. T., “Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces,” Eur. Phys. J. B, Vol. 54, No. 4, pp. 509–524, 2006.

    Article  Google Scholar 

  38. Barentzen, J. A. and Aanas, H., “Signed distance computation using the angle weighted pseudo-normal,” IEEE Transactions on Visualization and Computer Graphics, Vol. 11, No. 3, pp. 243–253, 2005.

    Article  Google Scholar 

  39. Gueziec, A., “Meshsweeper: Dynamic point-to-polygonal mesh distance and applications,” IEEE Transactions on Visualization and Computer Graphics, Vol. 7, No. 1, pp. 47–60, 2001.

    Article  Google Scholar 

  40. Sud, A., Otaduy, M. A., and Manocha, D., “DiFi: Fast 3D distance field computation using graphics hardware,” Proc. of Euro-graphics, Vol. 23, No. 3, pp. 557–566, 2004.

    Article  Google Scholar 

  41. Yoo, D. J., “General 3D offsetting of a triangular net using an implicit function and the distance fields,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 4, pp. 131–142, 2009.

    Article  Google Scholar 

  42. Rajagopalan, S. and Robb, R. A., “Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds,” Med. Image Anal., Vol. 10, No. 5, pp. 693–712, 2006.

    Article  Google Scholar 

  43. Melchels, F. P. W., Bertoldi, K., Gabbrielli, R., Velders, A. H., and Feijen, J., “Mathematically defined tissue engineering scaffold architectures prepared by stereolithography,” Biomaterials, Vol. 31, No. 27, pp. 6909–6916, 2010.

    Article  Google Scholar 

  44. Melchels, F. P. W., Barradas, A. M. C., Blitterswijk, C. A., Boer, J., and Feijen, J., “Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing,” Acta Biomaterialia, Vol. 6, No. 11, pp. 4208–4217, 2010.

    Article  Google Scholar 

  45. Kapfer, S. C., Hyde, S. T., Mecke, K., Arns, C. H., and Schroder-Turk, G. E., “Minimal surface scaffold designs for tissue engineering,” Biomaterials, Vol. 32, No. 29, pp. 6875–6882, 2011.

    Article  Google Scholar 

  46. Sun, C., Fang, N., Wu, D. M., and Zhang, X., “Projection micro stereolithography using digital micro-mirror dynamic mask,” Sensors and Actuators A: Physical, Vol. 121, No. 1, pp. 113–120, 2005.

    Article  Google Scholar 

  47. Lu, Y., Mapilli, G., Suhali, G., Chen, S., and Roy, K., “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A, Vol. 77, No. 2, pp. 396–405, 2006.

    Article  Google Scholar 

  48. Park, I. B., Ha, Y. M., Kim, M. S., and Lee, S. H., “Fabrication of a micro-lens array with a nonlayered method in projection microstereolithography,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 3, pp. 483–490, 2010.

    Article  Google Scholar 

  49. Jung, J. W., Kang, H. W., Kang, T. Y., Park, J. H., Park, J. S., and Cho, D. W., “Projection image-generation algorithm for fabrication of a complex structure using projection-based microstereolithography,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 3, pp. 445–449, 2012.

    Article  Google Scholar 

  50. Gauvin, R., Chen, Y. C., Lee, J. W., Soman, P., Zorlutuna, P., Nichol, J. W., Bae, H., Chen, S., and Khademhosseini, A., “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials, Vol. 33, No. 15, pp. 3824–3834, 2012.

    Article  Google Scholar 

  51. Dean, D., Wallace, J., Siblani, A., Wang, M. O., Kim, K., Mikos, A. G., and Fisher, J. P., “Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual and Physical Prototyping, Vol. 7, No. 1, pp. 13–24, 2012.

    Article  Google Scholar 

  52. Yoo, D. J., “New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds,” Med. Eng. Phys., Vol. 34, No. 6, pp. 762–776, 2012.

    Article  Google Scholar 

  53. Yoo, D. J., “New paradigms in hierarchical porous scaffold design for tissue engineering,” Mat. Sci. Eng. C-Biomim., Vol. 33, No. 3, pp. 1759–1772, 2013.

    Article  Google Scholar 

  54. Mironov, V., Boland, T., Trusk, T., Forgacs, G., and Markwald, R. R., “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol., Vol. 21, No. 4, pp. 157–161, 2003.

    Article  Google Scholar 

  55. Wang, X., Yan, Y., and Zhang, R., “Rapid prototyping as a tool for manufacturing bioartificial livers,” Trends Biotechnol., Vol. 25, No. 11, pp. 505–513, 2007.

    Article  Google Scholar 

  56. Wang, X., Yan, Y., and Zhang, R., “Recent trends and challenges in complex organ manufacturing,” Tissue Eng. Part B rev., Vol. 16, No. 2, pp. 189–197, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Jin Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, DJ. Heterogeneous porous scaffold design using the continuous transformations of triply periodic minimal surface models. Int. J. Precis. Eng. Manuf. 14, 1743–1753 (2013). https://doi.org/10.1007/s12541-013-0234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0234-4

Keywords

Navigation