Skip to main content
Log in

Abstract

Today, hybrid processes have a great influence on various material process fields due to factors such as improvements in the machinability and reductions of process forces. Also, the development of hybrid processes represents a new opportunity for the growth of manufacturing technology. Hybrid processes are developed to enhance the advantages of individual processes. The effect of hybrid processes is better than the sum of the advantages of a single process. Many researchers have studied a number of approaches to combine various manufacturing processes. Specifically, since the development of the laser, it has been applied in various engineering fields. Moreover, interest in laser and non-laser hybrid processes is recently increasing in various industries. The laser is a type of non-contact thermal energy technology and is used in material processing. The laser heat source can be used for the heating and preheating of various materials. In this paper, the laser is selected as an energy source and laser-assisted hybrid processes over the past five years are reviewed, including those related to machining, welding and coating processes. The last part of this paper discusses the trends in future research on laser-assisted hybrid processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubey, A. K. and Yadava, V., “Laser Beam Machining-A Review,” International Journal of Machine Tools and Manufacture, Vol. 48, No. 6, pp. 609–628, 2008.

    Article  Google Scholar 

  2. Samant, A. N. and Dahotre, N. B., “Laser Machining of Structural Ceramics-A Review,” Journal of the European Ceramic Society, Vol. 29, No. 6, pp. 969–993, 2009.

    Article  Google Scholar 

  3. Chavoshi, S. Z. and Luo, X., “Hybrid Micro-Machining Processes: A Review,” Precision Engineering, Vol. 41, pp. 1–23, 2015.

    Article  Google Scholar 

  4. Zhu, Z., Dhokia, V. G., Nassehi, A., and Newman, S. T., “A Review of Hybrid Manufacturing Processes-State of the Art and Future Perspectives,” International Journal of Computer Integrated Manufacturing, Vol. 26, No. 7, pp. 596–615, 2013.

    Article  Google Scholar 

  5. Lauwers, B., Klocke, F., Klink, A., Tekkaya, A. E., Neugebauer, R., and Mcintosh, D., “Hybrid Processes in Manufacturing,” CIRP Annals-Manufacturing Technology, Vol. 63, No. 2, pp. 561–583, 2014.

    Article  Google Scholar 

  6. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.

    Article  Google Scholar 

  7. Sun, S., Brandt, M., and Dargusch, M., “Thermally Enhanced Machining of Hard-to-Machine Materials-A Review,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 8, pp. 663–680, 2010.

    Article  Google Scholar 

  8. Schuh, G., Kreysa, J., and Orilski, S., “Roadmap “Hybride Produktion”,” Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Vol. 104, No. 5, pp. 385–391, 2009.

    Google Scholar 

  9. Davim, J. P., “Nontraditional Machining Processes,” Springer, pp. 1–34, 2013.

    Book  Google Scholar 

  10. Steen, W., Watkins, K. G., and Mazumder, J., “Laser Material Processing,” Springer Science & Business Media, pp. 32–51, 2010.

    Book  Google Scholar 

  11. Meijer, J., “Laser Beam Machining (LBM), State of the Art and New Opportunities,” Journal of Materials Processing Technology, Vol. 149, No. 1, pp. 2–17, 2004.

    Article  MathSciNet  Google Scholar 

  12. Kannatey-Asibu, E., “Principles of Laser Materials Processing,” John Wiley & Sons, pp. 407–482, 2009.

    Google Scholar 

  13. Toyserkani, E., Khajepour, A., and Corbin, S. F., “Laser Cladding,” CRC Press, pp. 41–65, 2005.

    Google Scholar 

  14. Nath, A. K., “High Power Lasers in Material Processing Applications: An Overview of Recent Developments,” Laser-Assisted Fabrication of Materials, Vol. 161, pp. 69–111, 2013.

    Article  MathSciNet  Google Scholar 

  15. Thyagarajan, K. and Ghatak, A., “Lasers: Fundamentals and Applications,” Springer Science & Business Media, 2nd Ed., pp. 471–505, 2010.

    Google Scholar 

  16. El-Hofy, H., “Advanced Machining Processes,” McGraw-Hill Education Korea, Ltd., Korean Language Edition, pp. 161–181, 2013.

    Book  Google Scholar 

  17. Kim, H.-C. and Ko, T. J., “Verification of Simulation of Surface Texturing on Planar Surface by Grinding,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 225–231, 2015.

    Article  Google Scholar 

  18. Chen, P.-C., Chen, Y.-C., Pan, C.-W., and Li, K.-M., “Parameter Optimization of Micromilling Brass Mold Inserts for Microchannels with Taguchi Method,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 647–651, 2015.

    Article  Google Scholar 

  19. Heo, S., Lee, M., Kim, S. H., Lee, W., and Min, B.-K., “Compensation of Tool Deflection in Micromilling using Workpiece Holder Control Device,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1205–1208, 2015.

    Article  Google Scholar 

  20. Heo, J., Min, H., and Lee, M., “Laser Micromachining of Permalloy for Fine Metal Mask,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 225–230, 2015.

    Article  Google Scholar 

  21. Kang, D. W. and Lee, C. M., “A Study on the Development of the Laser-Assisted Milling Process and a Related Constitutive Equation for Silicon Nitride,” CIRP Annals-Manufacturing Technology, Vol. 63, No. 1, pp. 109–112, 2014.

    Article  Google Scholar 

  22. Kim, D.-H. and Lee, C.-M., “A Study of Cutting Force and Preheating-Temperature Prediction for Laser-Assisted Milling of Inconel 718 and AISI 1045 Steel,” International Journal of Heat and Mass Transfer, Vol. 71, pp. 264–274, 2014.

    Article  Google Scholar 

  23. Woo, W.-S. and Lee, C.-M., “A Study of the Machining Characteristics of AISI 1045 Steel and Inconel 718 with a Cylindrical Shape in Laser-Assisted Milling,” Applied Thermal Engineering, Vol. 91, pp. 33–42, 2015.

    Article  Google Scholar 

  24. Bermingham, M. J., Sim, W. M., Kent, D., Gardiner, S., and Dargusch, M. S., “Tool Life and Wear Mechanisms in Laser Assisted Milling Ti-6Al-4V,” Wear, Vols. 322-323, pp. 151–163, 2015.

    Article  Google Scholar 

  25. Zamani, H., Hermani, J.-P., Sonderegger, B., and Sommitsch, C., “3D Simulation and Process Optimization of Laser Assisted Milling of Ti6Al4V,” Procedia CIRP, Vol. 8, pp. 75–80, 2013.

    Article  Google Scholar 

  26. Kumar, M. and Melkote, S. N., “Process Capability Study of Laser Assisted Micro Milling of a Hard-to-Machine Material,” Journal of Manufacturing Processes, Vol. 14, No. 1, pp. 41–51, 2012.

    Article  Google Scholar 

  27. Kim, K.-S., Kim, J.-H., Choi, J.-Y., and Lee, C.-M., “A Review on Research and Development of Laser Assisted Turning,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 753–759, 2011.

    Article  MathSciNet  Google Scholar 

  28. Dandekar, C. R. and Shin, Y. C., “Multi-Scale Modeling to Predict Sub-Surface Damage Applied to Laser-Assisted Machining of a Particulate Reinforced Metal Matrix Composite,” Journal of Materials Processing Technology, Vol. 213, No. 2, pp. 153–160, 2013.

    Article  Google Scholar 

  29. Dandekar, C. R., Shin, Y. C., and Barnes, J., “Machinability Improvement of Titanium Alloy (Ti-6Al-4V) via Lam and Hybrid Machining,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 2, pp. 174–182, 2010.

    Article  Google Scholar 

  30. Ding, H. and Shin, Y. C., “Laser-Assisted Machining of Hardened Steel Parts with Surface Integrity Analysis,” International Journal of Machine tools and manufacture, Vol. 50, No. 1, pp. 106–114, 2010.

    Article  Google Scholar 

  31. Mohammadi, H., Ravindra, D., Kode, S. K., and Patten, J. A., “Experimental Work on Micro Laser-Assisted Diamond Turning of Silicon (111),” Journal of Manufacturing Processes, Vol. 19, pp. 125–128, 2015.

    Article  Google Scholar 

  32. Kim, J.-H., Kim, K.-S., Choi, J.-Y., and Lee, C.-M., “Estimation of Deformed Laser Heat Sources and Thermal Analysis on Laser Assisted Turning of Square Member,” Journal of Central South University, Vol. 19, No. 2, pp. 402–407, 2012.

    Article  MathSciNet  Google Scholar 

  33. Choi, J. Y. and Lee, C. M., “Evaluation of Cutting Force and Surface Temperature for Round and Square Member in Laser Assisted Turn-Mill,” Applied Mechanics and Materials, Vols. 229-231, pp. 718–722, 2012.

    Article  Google Scholar 

  34. Choi, J.-Y. and Lee, C.-M., “NC Code Generation for Laser Assisted Turn-Mill of Various Type of Clovers and Square Section Members,” Journal of Central South University, Vol. 19, No. 11, pp. 3064–3068, 2012.

    Article  MathSciNet  Google Scholar 

  35. Kim, J.-H., Choi, J.-Y., and Lee, C.-M., “A Study on the Effect of Laser Preheating on Laser Assisted Turn-Mill for Machining Square and Spline Members,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 275–282, 2014.

    Article  Google Scholar 

  36. Cha, N.-H., Woo, W.-S., and Lee, C.-M., “A Study on the Optimum Machining Conditions for Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2327–2332, 2015.

    Article  Google Scholar 

  37. Cha, N.-H. and Lee, C.-M., “A Study on Machining Characteristics of Silicon Nitride with Spline Members in Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2691–2697, 2015.

    Article  Google Scholar 

  38. Zhang, X. H., Chen, G. Y., An, W. K., Deng, Z. H., and Zhou, Z. X., “Experimental Investigations of Machining Characteristics of Laser-Induced Thermal Cracking in Alumina Ceramic Wet Grinding,” The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 9-12, pp. 1325–1331, 2014.

    Article  Google Scholar 

  39. Chang, W. L., Luo, X. C., Zhao, Q. L., Sun, J. N., and Zhao, Y., “Laser Assisted Micro Grinding of High Strength Materials,” Key Engineering Materials, Vol. 496, pp. 44–49, 2012.

    Article  Google Scholar 

  40. Brecher, C., Emonts, M., Rosen, C.-J., and Hermani, J.-P., “Laser-Assisted Milling of Advanced Materials,” Physics Procedia, Vol. 12, Part A, pp. 599–606, 2011.

    Article  Google Scholar 

  41. Ding, H., Shen, N., and Shin, Y. C., “Thermal and Mechanical Modeling Analysis of Laser-Assisted Micro-Milling of Difficult-to-Machine Alloys,” Journal of Materials Processing Technology, Vol. 212, No. 3, pp. 601–613, 2012.

    Article  Google Scholar 

  42. Bermingham, M. J., Schaffarzyk, P., Palanisamy, S., and Dargusch, M. S., “Laser-Assisted Milling Strategies with Different Cutting Tool Paths,” The International Journal of Advanced Manufacturing Technology, Vol. 74, No. 9-12, pp. 1487–1494, 2014.

    Article  Google Scholar 

  43. Wiedenmann, R. and Zaeh, M. F., “Laser-Assisted Milling-Process Modeling and Experimental Validation,” CIRP Journal of Manufacturing Science and Technology, Vol. 8, pp. 70–77, 2015.

    Article  Google Scholar 

  44. Jeon, Y. and Lee, C. M., “Current Research Trend on Laser Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 2, pp. 311–317, 2012.

    Article  Google Scholar 

  45. Jeon, Y., Park, H. W., and Lee, C. M., “Current Research Trends in External Energy Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 337–342, 2013.

    Article  Google Scholar 

  46. Jung, J.-W., Choi, J.-Y., and Lee, C.-M., “A Study on Laser Assisted Machining using a Laser Area Analysis Method,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 329–332, 2013.

    Article  Google Scholar 

  47. Kim, K.-S., Kim, T.-W., and Lee, C.-M., “Analysis of a Laser Assisted Milling Process with Inclination Angles,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 8, pp. 1495–1499, 2013.

    Article  Google Scholar 

  48. Kang, D.-W. and Lee, C.-M., “A Study on Determining the Exponents for a Constitutive Equation in Laser Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 11, pp. 2051–2054, 2013.

    Article  Google Scholar 

  49. Sim, M.-S. and Lee, C.-M., “A Study on the Laser Preheating Effect of Inconel 718 Specimen with Rotated Angle with Respect to 2-Axis,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 1, pp. 189–192, 2014.

    Article  Google Scholar 

  50. Ahn, J. W., Woo, W. S., and Lee, C. M., “A Study on the Energy Efficiency of Specific Cutting Energy in Laser-Assisted Machining,” Applied Thermal Engineering, Vol. 94, pp. 748–753, 2016.

    Article  Google Scholar 

  51. Nguyen-Tran, H.-D., Oh, H.-S., Hong, S.-T., Han, H. N., Cao, J., et al., “A Review of Electrically-Assisted Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 365–376, 2015.

    Article  Google Scholar 

  52. Chung, D. K. and Chu, C. N., “Effect of Inductance in Micro Edm using High Frequency Bipolar Pulse Generator,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 299–303, 2015.

    Article  Google Scholar 

  53. Song, K. Y. and Chu, C. N., “Effect of Machining Area on Material Removal Rate in Strip EDM,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2435–2440, 2015.

    Article  Google Scholar 

  54. Lee, P. A., Kim, Y., and Kim, B. H., “Effect of Low Frequency Vibration on Micro EDM Drilling,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2617–2622, 2015.

    Article  Google Scholar 

  55. Duong, T.-H. and Kim, H.-C., “Electrochemical Etching Technique for Tungsten Electrodes with Controllable Profiles for Micro-Electrical Discharge Machining,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1053–1060, 2015.

    Article  Google Scholar 

  56. Ryu, S. H., “Eco-Friendly ECM in Citric Acid Electrolyte with Microwire and Microfoil Electrodes,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 233–239, 2015.

    Article  Google Scholar 

  57. Pan, Y. and Xu, L., “Vibration Analysis and Experiments on Electrochemical Micro-Machining using Cathode Vibration Feed System,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 143–149, 2015.

    Article  MathSciNet  Google Scholar 

  58. Nguyen, K.-H., Lee, P. A., and Kim, B. H., “Experimental Investigation of ECDM for Fabricating Micro Structures of Quartz,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 5–12, 2015.

    Article  Google Scholar 

  59. Kim, W.-B., Nam, E., Min, B.-K., Choi, D.-S., Je, T.-J., and Jeon, E.-C., “Material Removal of Glass by Magnetorheological Fluid Jet,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 629–637, 2015.

    Article  Google Scholar 

  60. De Silva, A. K. M., Pajak, P. T., McGeough, J. A., and Harrison, D. K., “Thermal Effects in Laser Assisted Jet Electrochemical Machining,” CIRP Annals-Manufacturing Technology, Vol. 60, No. 1, pp. 243–246, 2011.

    Article  Google Scholar 

  61. Hua, Z. and Jiawen, X., “Modeling and Experimental Investigation of Laser Drilling with Jet Electrochemical Machining,” Chinese Journal of Aeronautics, Vol. 23, No. 4, pp. 454–460, 2010.

    Article  Google Scholar 

  62. Skoczypiec, S., “Application of laser and Electrochemical Interaction in Sequential and Hybrid Micromachining Processes,” Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 63, No. 1, pp. 305–314, 2015.

    Article  Google Scholar 

  63. Long, Y. H., Liu, Q. Y., Zhang, Z. X., Xiong, L. C., and Shi, T. L., “Experimental Study on the Processes of Laser-Enhanced Electrochemical Micromachining Stainless Steel,” Optik-International Journal for Light and Electron Optics, Vol., No., 2015.

    Google Scholar 

  64. Clerici, M., Hu, Y., Lassonde, P., Milián, C., Couairon, A., et al., “Laser-Assisted Guiding of Electric Discharges Around Objects,” Science Advances, Vol. 1, No. 5, Paper No. e1400111, 2015.

    Google Scholar 

  65. Li, L., Diver, C., Atkinson, J., Giedl-Wagner, R., and Helml, H., “Sequential Laser and EDM Micro-Drilling for Next Generation Fuel Injection Nozzle Manufacture,” CIRP Annals-Manufacturing Technology, Vol. 55, No. 1, pp. 179–182, 2006.

    Article  Google Scholar 

  66. Al-Ahmari, A., Rasheed, M. S., Mohammed, M. K., and Saleh, T., “A Hybrid Machining Process Combining Micro-EDM and Laser Beam Machining of Nickel-Titanium based Shape Memory Alloy,” Materials and Manufacturing Processes, Vol. 31, No. 4, pp. 447–455, 2015.

    Article  Google Scholar 

  67. Hock, K., Adelmann, B., and Hellmann, R., “Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets,” Physics Procedia, Vol. 39, No. pp. 225–231, 2012.

    Article  Google Scholar 

  68. Melaibari, A., Molian, P., and Shrotriya, P., “Two-Dimensional Contour Cutting of Polycrystalline Cubic Boron Nitride using a Novel Laser/Water Jet Hybrid Process,” The International Journal of Advanced Manufacturing Technology, Vol. 63, No. 5-8, pp. 641–649, 2012.

    Article  Google Scholar 

  69. Madhukar, Y. K., Mullick, S., Chakraborty, S. S., and Nath, A. K., “Effect of Water-Jet on Laser Paint Removal Behaviour,” Procedia Engineering, Vol. 64, pp. 467–472, 2013.

    Article  Google Scholar 

  70. Rashed, C. A. A., Romoli, L., Tantussi, F., Fuso, F., Burgener, M., et al., “Water Jet Guided Laser as an Alternative to EDM for Micro-Drilling of Fuel Injector Nozzles: A Comparison of Machined Surfaces,” Journal of Manufacturing Processes, Vol. 15, No. 4, pp. 524–532, 2013.

    Article  Google Scholar 

  71. Tusek, J. and Suban, M., “Hybrid Welding with Arc and Laser Beam,” Science and Technology of Welding & Joining, Vol. 4, No. 5, pp. 308–311, 1999.

    Article  Google Scholar 

  72. Bagger, C. and Olsen, F. O., “Review of Laser Hybrid Welding,” Journal of Laser Applications, Vol. 17, No. 1, pp. 2–14, 2005.

    Article  Google Scholar 

  73. Gao, M., Zeng, X., and Hu, Q., “Effects of Gas Shielding Parameters on Weld Penetration of CO2 Laser-Tig Hybrid Welding,” Journal of Materials Processing Technology, Vol. 184, No. 1, pp. 177–183, 2007.

    Google Scholar 

  74. Zhang, D.-Q., Li, J., Joo, H. G., and Lee, K. Y., “Corrosion Properties of Nd: YAG Laser-GMA Hybrid Welded AA6061 Al Alloy and Its Microstructure,” Corrosion Science, Vol. 51, No. 6, pp. 1399–1404, 2009.

    Article  Google Scholar 

  75. Choi, J.-O. and Kim, C.-S., “Nanoscale Patterning and Welding by Solvent-Free Dry Particle Spray and Focused Ion Beam,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 257–260, 2014.

    Article  Google Scholar 

  76. Gao, X., Sun, Y., and Katayama, S., “Neural Network of Plume and Spatter for Monitoring High-Power Disk Laser Welding,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 293–298, 2014.

    Article  Google Scholar 

  77. Lee, S.-J., Takahashi, M., Kawahito, Y., and Katayama, S., “Microstructural Evolution and Characteristics of Weld Fusion Zone in High Speed Dissimilar Welding of Ti and Al,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2121–2127, 2015.

    Article  Google Scholar 

  78. Yu, J., “Quality Estimation of Resistance Spot Weld based on Logistic Regression Analysis of Welding Power Signal,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2655–2663, 2015.

    Article  Google Scholar 

  79. Cho, Y. T. and Na, S. J., “Numerical Analysis of Plasma in Co2 Laser and Arc Hybrid Welding,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 787–795, 2015.

    Article  Google Scholar 

  80. Abe, T. and Sasahara, H., “Development of the Shell Structures Fabrication Cam System for Direct Metal Lamination using Arc Discharge-Lamination Height Error Compensation by Torch Feed Speed Control,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 171–176, 2015.

    Article  Google Scholar 

  81. Steen, W. M., “Arc Augmented Laser Processing of Materials,” Journal of Applied Physics, Vol. 51, No. 11, pp. 5636–5641, 1980.

    Article  Google Scholar 

  82. Li, R., Li, Z., Zhu, Y., and Rong, L., “A Comparative Study of Laser Beam Welding and Laser-MIG Hybrid Welding of Ti-Al-Zr-Fe Titanium Alloy,” Materials Science and Engineering: A, Vol. 528, No. 3, pp. 1138–1142, 2011.

    Article  Google Scholar 

  83. Le Guen, E., Fabbro, R., Carin, M., Coste, F., and Le Masson, P., “Analysis of Hybrid Nd: YAG Laser-MAG Arc Welding Processes,” Optics & Laser Technology, Vol. 43, No. 7, pp. 1155–1166, 2011.

    Article  Google Scholar 

  84. Gao, M., Mei, S., Wang, Z., Li, X., and Zeng, X., “Process and Joint Characterizations of Laser-MIG Hybrid Welding of AZ31 Magnesium Alloy,” Journal of Materials Processing Technology, Vol. 212, No. 6, pp. 1338–1346, 2012.

    Article  Google Scholar 

  85. Yan, J., Gao, M., and Zeng, X., “Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by Tig, Laser and Laser-Tig Hybrid Welding,” Optics and Lasers in Engineering, Vol. 48, No. 4, pp. 512–517, 2010.

    Article  Google Scholar 

  86. Shenghai, Z., Yifu, S., and Huijuan, Q., “The Technology and Welding Joint Properties of Hybrid Laser-Tig Welding on Thick Plate,” Optics & Laser Technology, Vol. 48, No. pp. 381–388, 2013.

    Article  Google Scholar 

  87. Ribic, B., Burgardt, P., and DebRoy, T., “Optical Emission Spectroscopy of Metal Vapor Dominated Laser-Arc Hybrid Welding Plasma,” Journal of Applied Physics, Vol. 109, No. 8, Paper No. 083301, 2011.

    Google Scholar 

  88. Möller, F. and Thomy, C., “Interaction Effects between Laser Beam and Plasma Arc in Hybrid Welding of Aluminum,” Physics Procedia, Vol. 41, pp. 81–89, 2013.

    Article  Google Scholar 

  89. Rose, D.-I. S. and Demuth, D. M. C., “Experimental and Numerical Investigations of the Interaction between a Plasma Arc and a Laser,” Welding in the World, Vol. 56, No. 3-4, pp. 93–100, 2012.

    Article  Google Scholar 

  90. Zhou, S., Huang, Y., Zeng, X., and Hu, Q., “Microstructure Characteristics of Ni-based Wc Composite Coatings by Laser Induction Hybrid Rapid Cladding,” Materials Science and Engineering: A, Vol. 480, No. 1, pp. 564–572, 2008.

    Article  Google Scholar 

  91. Zhou, S., Dai, X., and Zeng, X., “Effects of Processing Parameters on Structure of Ni-based WC Composite Coatings during Laser Induction Hybrid Rapid Cladding,” Applied Surface Science, Vol. 255, No. 20, pp. 8494–8500, 2009.

    Article  Google Scholar 

  92. Huang, Y., Zeng, X., Hu, Q., and Zhou, S., “Microstructure and Interface Interaction in Laser Induction Hybrid Cladding of Nibased Coating,” Applied Surface Science, Vol. 255, No. 7, pp. 3940–3945, 2009.

    Article  Google Scholar 

  93. Lee, J.-M., Song, H., Kim, Y., Koo, J.-M., and Seok, C.-S., “Evaluation of Thermal Gradient Mechanical Fatigue Characteristics of Thermal Barrier Coating, Considering the Effects of Thermally Grown Oxide,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1675–1679, 2015.

    Article  Google Scholar 

  94. Li, H.-Y., He, H.-B., Han, W.-Q., Yang, J., Gu, T., et al., “A Study on Cutting and Tribology Performances of Tin and Tialn Coated Tools,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 781–786, 2015.

    Article  Google Scholar 

  95. Rahul, S. H., Balasubramanian, K., and Venkatesh, S., “Inkjet Printing of Yttria Stabilized Zirconia Nano Particles on Metal Substrates,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2553–2561, 2015.

    Article  Google Scholar 

  96. Zhou, S., Dai, X., and Zheng, H., “Analytical Modeling and Experimental Investigation of Laser Induction Hybrid Rapid Cladding for Ni-based Wc Composite Coatings,” Optics & Laser Technology, Vol. 43, No. 3, pp. 613–621, 2011.

    Article  Google Scholar 

  97. Huang, Y., “Characterization of Dilution Action in Laser-Induction Hybrid Cladding,” Optics & Laser Technology, Vol. 43, No. 5, pp. 965–973, 2011.

    Article  Google Scholar 

  98. Wang, D. Z., Hu, Q. W., and Zeng, X. Y., “Residual Stress and Cracking Behaviors of Cr13Ni5Si based Composite Coatings Prepared by Laser-Induction Hybrid Cladding,” Surface and Coatings Technology, Vol. 274, pp. 51–59, 2015.

    Article  Google Scholar 

  99. Roy, M., Balla, V. K., Bandyopadhyay, A., and Bose, S., “Compositionally Graded Hydroxyapatite/Tricalcium Phosphate Coating on Ti by Laser and Induction Plasma,” Acta biomaterialia, Vol. 7, No. 2, pp. 866–873, 2011.

    Article  Google Scholar 

  100. Serres, N., Hlawka, F., Costil, S., Langlade, C., and Machi, F., “Microstructures of Metallic Nicrbsi Coatings Manufactured via Hybrid Plasma Spray and in situ Laser Remelting Process,” Journal of Thermal Spray Technology, Vol. 20, No. 1-2, pp. 336–343, 2011.

    Article  Google Scholar 

  101. Lin, Y.-C., Chuang, F.-P., Wang, A.-C., and Chow, H.-M., “Machining Characteristics of Hybrid EDM with Ultrasonic Vibration and Assisted Magnetic Force,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1143–1149, 2014.

    Article  Google Scholar 

  102. Joo, S.-M., Bang, H.-S., and Kwak, S.-Y., “Optimization of Hybrid CO2 laser-GMA Welding Parameters on Dissimilar Materials AH32/ STS304L using Grey-based Taguchi Analysis,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 447–454, 2014.

    Article  Google Scholar 

  103. Lee, W., Nam, E., Lee, C.-Y., Jang, K.-I., and Min, B.-K., “Electrochemical Oxidation Assisted Micromachining of Glassy Carbon Substrate,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 419–422, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Man Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CM., Woo, WS., Kim, DH. et al. Laser-assisted hybrid processes: A review. Int. J. Precis. Eng. Manuf. 17, 257–267 (2016). https://doi.org/10.1007/s12541-016-0034-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0034-8

Keywords

Navigation