Skip to main content
Erschienen in: Cognitive Computation 1/2009

01.03.2009

Cognitive Computation with Autonomously Active Neural Networks: An Emerging Field

verfasst von: Claudius Gros

Erschienen in: Cognitive Computation | Ausgabe 1/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The human brain is autonomously active. To understand the functional role of this self-sustained neural activity, and its interplay with the sensory data input stream, is an important question in cognitive system research and we review here the present state of theoretical modeling. This review will start with a brief overview of the experimental efforts, together with a discussion of transient versus self-sustained neural activity in the framework of reservoir computing. The main emphasis will be then on two paradigmal neural network architectures showing continuously ongoing transient-state dynamics: saddle point networks and networks of attractor relics. Self-active neural networks are confronted with two seemingly contrasting demands: a stable internal dynamical state and sensitivity to incoming stimuli. We show, that this dilemma can be solved by networks of attractor relics based on competitive neural dynamics, where the attractor relics compete on one side with each other for transient dominance, and on the other side with the dynamical influence of the input signals. Unsupervised and local Hebbian-style online learning then allows the system to build up correlations between the internal dynamical transient states and the sensory input stream. An emergent cognitive capability results from this set-up. The system performs online, and on its own, a nonlinear independent component analysis of the sensory data stream, all the time being continuously and autonomously active. This process maps the independent components of the sensory input onto the attractor relics, which acquire in this way a semantic meaning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gros C. Complex and adaptive dynamical systems, a primer. Berlin: Springer; 2008. Gros C. Complex and adaptive dynamical systems, a primer. Berlin: Springer; 2008.
2.
Zurück zum Zitat Gros C. Emotions, diffusive emotional control and the motivational problem for autonomous cognitive systems. In: Vallverdu J, Casacuberta D (eds) Handbook of research on synthetic emotions and sociable robotics: new applications in affective computing and artificial intelligence. IGI-Global; 2009 (in press). Gros C. Emotions, diffusive emotional control and the motivational problem for autonomous cognitive systems. In: Vallverdu J, Casacuberta D (eds) Handbook of research on synthetic emotions and sociable robotics: new applications in affective computing and artificial intelligence. IGI-Global; 2009 (in press).
3.
Zurück zum Zitat Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;9:700–11.CrossRef Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;9:700–11.CrossRef
4.
Zurück zum Zitat Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 1996;273:1868–71.PubMedCrossRef Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 1996;273:1868–71.PubMedCrossRef
5.
Zurück zum Zitat Raichle ME, Mintun MA. Brain work and brain imaging. Annl Rev Neurosci. 2006;29:449–76.CrossRef Raichle ME, Mintun MA. Brain work and brain imaging. Annl Rev Neurosci. 2006;29:449–76.CrossRef
6.
Zurück zum Zitat Vogels TP, Rajan K, Abbott LF. Neural network dynamics. Annl Rev Neurosci. 2005;28:357–76.CrossRef Vogels TP, Rajan K, Abbott LF. Neural network dynamics. Annl Rev Neurosci. 2005;28:357–76.CrossRef
7.
Zurück zum Zitat Fiser J, Chiu C, Weliky M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature. 2004;431:573–8.PubMedCrossRef Fiser J, Chiu C, Weliky M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature. 2004;431:573–8.PubMedCrossRef
8.
Zurück zum Zitat Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci. 2003;103:10046–51.CrossRef Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci. 2003;103:10046–51.CrossRef
9.
Zurück zum Zitat Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425:954–6.PubMedCrossRef Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425:954–6.PubMedCrossRef
11.
Zurück zum Zitat MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48:811–23.PubMedCrossRef MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48:811–23.PubMedCrossRef
12.
Zurück zum Zitat Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci. 2005;102:9673–8.PubMedCrossRef Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci. 2005;102:9673–8.PubMedCrossRef
13.
Zurück zum Zitat Abeles M, Bergman H, Gat I, Meilijson I, Seidemann E, Tishby N, et al. Cortical activity flips among quasi-stationary states. Proc Natl Acad Sci. 1995;92:8616–20.PubMedCrossRef Abeles M, Bergman H, Gat I, Meilijson I, Seidemann E, Tishby N, et al. Cortical activity flips among quasi-stationary states. Proc Natl Acad Sci. 1995;92:8616–20.PubMedCrossRef
14.
Zurück zum Zitat Gros C. Self-sustained thought processes in a dense associative network. In: Furbach, U (ed) KI 2005: Advances in artificial intelligence, Springer lecture notes in artificial intelligence 3698; 2005. p. 366–79. Gros C. Self-sustained thought processes in a dense associative network. In: Furbach, U (ed) KI 2005: Advances in artificial intelligence, Springer lecture notes in artificial intelligence 3698; 2005. p. 366–79.
15.
Zurück zum Zitat Edelman GM, Tononi GA. A universe of consciousness. New York: Basic Books; 2000. Edelman GM, Tononi GA. A universe of consciousness. New York: Basic Books; 2000.
16.
Zurück zum Zitat Edelman GM. Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci. 2003;100:5520–4.PubMedCrossRef Edelman GM. Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci. 2003;100:5520–4.PubMedCrossRef
17.
Zurück zum Zitat Baars BJ, Ramsoy TZ, Laureys S. Brain, conscious experience and the observing self. Trend Neurosci. 2003;26:671–5.PubMedCrossRef Baars BJ, Ramsoy TZ, Laureys S. Brain, conscious experience and the observing self. Trend Neurosci. 2003;26:671–5.PubMedCrossRef
18.
Zurück zum Zitat Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage. 2007;37:1073–82.CrossRef Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage. 2007;37:1073–82.CrossRef
19.
Zurück zum Zitat Vincent JL, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–6.PubMedCrossRef Vincent JL, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–6.PubMedCrossRef
20.
Zurück zum Zitat Greicius MD, et al. Persistent default-mode network connectivity during light sedation. Human Brain Map. 2008;29:839–47.CrossRef Greicius MD, et al. Persistent default-mode network connectivity during light sedation. Human Brain Map. 2008;29:839–47.CrossRef
21.
Zurück zum Zitat Pagnoni G, Cekic M, Guo Y. Thinking about not-thinking: neural correlates of conceptual processing during Zen meditation. PLoS. 2008;3:1–10. Pagnoni G, Cekic M, Guo Y. Thinking about not-thinking: neural correlates of conceptual processing during Zen meditation. PLoS. 2008;3:1–10.
22.
Zurück zum Zitat Jaeger H. The “echo State”: approach to analysing and training recurrent neural networks. GMD-Forschungszentrum Informationstechnik; 2001. Jaeger H. The “echo State”: approach to analysing and training recurrent neural networks. GMD-Forschungszentrum Informationstechnik; 2001.
23.
Zurück zum Zitat Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science. 2004;304:78–80.PubMedCrossRef Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science. 2004;304:78–80.PubMedCrossRef
24.
Zurück zum Zitat Maass W, Natschlager T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14:2531–60.PubMedCrossRef Maass W, Natschlager T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14:2531–60.PubMedCrossRef
25.
Zurück zum Zitat Maass W, Markram H. On the computational power of recurrent circuits of spiking neurons. J Comput Syst Sci. 2004;69:593–616.CrossRef Maass W, Markram H. On the computational power of recurrent circuits of spiking neurons. J Comput Syst Sci. 2004;69:593–616.CrossRef
26.
Zurück zum Zitat Maass W, Joshi P, Sontag ED. Computational aspects of feedback in neural circuits. PLoS Comput Biol. 2007;3:e165.PubMedCrossRef Maass W, Joshi P, Sontag ED. Computational aspects of feedback in neural circuits. PLoS Comput Biol. 2007;3:e165.PubMedCrossRef
27.
Zurück zum Zitat Baars BJ, Franklin S. How conscious experience and working memory interact. Trend Coginit Sci. 2003;7:166–72.CrossRef Baars BJ, Franklin S. How conscious experience and working memory interact. Trend Coginit Sci. 2003;7:166–72.CrossRef
28.
Zurück zum Zitat Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. 2003;79:1–37.CrossRef Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. 2003;79:1–37.CrossRef
29.
Zurück zum Zitat Shanahan M. A spiking neuron model of cortical broadcast and competition. Conscious Cognit. 2003;17:288–303.CrossRef Shanahan M. A spiking neuron model of cortical broadcast and competition. Conscious Cognit. 2003;17:288–303.CrossRef
30.
Zurück zum Zitat Shadlen MN, Newsome WT. Noise, neural codes and cortical organization. Find Curr Opin Cognit Neurosci. 1998;4:569–79. Shadlen MN, Newsome WT. Noise, neural codes and cortical organization. Find Curr Opin Cognit Neurosci. 1998;4:569–79.
32.
Zurück zum Zitat Averbeck BB, Lee D. Coding and transmission of information by neural ensembles. Trend Neurosci. 2004;27:225–30.PubMedCrossRef Averbeck BB, Lee D. Coding and transmission of information by neural ensembles. Trend Neurosci. 2004;27:225–30.PubMedCrossRef
33.
Zurück zum Zitat VanRullen R, Koch C. Is perception discrete or continuous? Trend Cognit Sci. 2003;5:207–13.CrossRef VanRullen R, Koch C. Is perception discrete or continuous? Trend Cognit Sci. 2003;5:207–13.CrossRef
34.
Zurück zum Zitat Kline K, Holcombe AO, Eagleman DM. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Res. 2004;44:2653–8.PubMedCrossRef Kline K, Holcombe AO, Eagleman DM. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Res. 2004;44:2653–8.PubMedCrossRef
35.
Zurück zum Zitat VanRullen R. The continuous wagon wheel illusion is object-based. Vision Res. 2006;46:4091–5.PubMedCrossRef VanRullen R. The continuous wagon wheel illusion is object-based. Vision Res. 2006;46:4091–5.PubMedCrossRef
36.
Zurück zum Zitat Rabinovich M, Huerta R, Varona P, Afraimovich VS. Transient cognitive dynamics, metastability, and decision making. PLoS Comput Biol. 2008;4:e1000072.PubMedCrossRef Rabinovich M, Huerta R, Varona P, Afraimovich VS. Transient cognitive dynamics, metastability, and decision making. PLoS Comput Biol. 2008;4:e1000072.PubMedCrossRef
37.
Zurück zum Zitat Krupa M. Robust heteroclinic cycles. J Nonlinear Sci. 1997;7:129–76.CrossRef Krupa M. Robust heteroclinic cycles. J Nonlinear Sci. 1997;7:129–76.CrossRef
38.
Zurück zum Zitat Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G. Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys Rev Lett. 2001;87:068102.PubMedCrossRef Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G. Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys Rev Lett. 2001;87:068102.PubMedCrossRef
39.
Zurück zum Zitat Amit DJ. Modeling brain function: the world of attractor neural networks. New York, NY, USA: Cambridge University Press; 1989. Amit DJ. Modeling brain function: the world of attractor neural networks. New York, NY, USA: Cambridge University Press; 1989.
40.
41.
Zurück zum Zitat Tsuda I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci. 2002;24:793–810.CrossRef Tsuda I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci. 2002;24:793–810.CrossRef
42.
43.
Zurück zum Zitat Sompolinsky H, Kanter I. Temporal association in asymmetric neural networks. Phys Rev Lett. 1986;57:2861–4.PubMedCrossRef Sompolinsky H, Kanter I. Temporal association in asymmetric neural networks. Phys Rev Lett. 1986;57:2861–4.PubMedCrossRef
44.
Zurück zum Zitat Gros C. Neural networks with transient state dynamics. New J Phys. 2007;9:109.CrossRef Gros C. Neural networks with transient state dynamics. New J Phys. 2007;9:109.CrossRef
45.
46.
Zurück zum Zitat O’Reilly RC. Six principles for biologically based computational models of cortical cognition. Trend Cognit Sci. 1998;2:455–62.CrossRef O’Reilly RC. Six principles for biologically based computational models of cortical cognition. Trend Cognit Sci. 1998;2:455–62.CrossRef
48.
Zurück zum Zitat Koch C. The quest for consciousness—a neurobiological approach. Robert and Company; 2004. Koch C. The quest for consciousness—a neurobiological approach. Robert and Company; 2004.
49.
Zurück zum Zitat Quiroga RQ, Kreiman G, Koch C, Fried I. Sparse but not grandmother-cell coding in the medial temporal lobe. Trend Cognit Sci. 2008;12:87–91.CrossRef Quiroga RQ, Kreiman G, Koch C, Fried I. Sparse but not grandmother-cell coding in the medial temporal lobe. Trend Cognit Sci. 2008;12:87–91.CrossRef
50.
Zurück zum Zitat Olshausen BA, Field DJ. Sparse coding of sensory inputs. Curr Opin Neurobiol. 2004;14:481–7.PubMedCrossRef Olshausen BA, Field DJ. Sparse coding of sensory inputs. Curr Opin Neurobiol. 2004;14:481–7.PubMedCrossRef
51.
Zurück zum Zitat Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci. 2005;102:6125–613.PubMedCrossRef Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci. 2005;102:6125–613.PubMedCrossRef
52.
Zurück zum Zitat Lin L, Osan R, Tsien JZ. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trend Neurosci. 2006;29:48–57.PubMedCrossRef Lin L, Osan R, Tsien JZ. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trend Neurosci. 2006;29:48–57.PubMedCrossRef
53.
Zurück zum Zitat Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005;435:1102–7.PubMedCrossRef Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005;435:1102–7.PubMedCrossRef
54.
Zurück zum Zitat Nelson DL, McEvoy CL, Schreiber TA. The University of South Florida free association, rhyme, and word fragment norms. Behav Res Method Instr Comput. 2004;36:402–7. Nelson DL, McEvoy CL, Schreiber TA. The University of South Florida free association, rhyme, and word fragment norms. Behav Res Method Instr Comput. 2004;36:402–7.
55.
Zurück zum Zitat Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature. 2005;435:814–8.PubMedCrossRef Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature. 2005;435:814–8.PubMedCrossRef
56.
Zurück zum Zitat Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2:1019–25.PubMedCrossRef Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2:1019–25.PubMedCrossRef
57.
Zurück zum Zitat Kaczor G, Gros C. Evolving complex networks with conserved clique distributions. Phys Rev E. 2008;78:016107. Kaczor G, Gros C. Evolving complex networks with conserved clique distributions. Phys Rev E. 2008;78:016107.
58.
Zurück zum Zitat Gros C, Kaczor G. Semantic learning in autonomously active recurrent neural networks. Preprint. Gros C, Kaczor G. Semantic learning in autonomously active recurrent neural networks. Preprint.
59.
Zurück zum Zitat Arbib MA. The handbook of brain theory and neural networks. Cambridge, MA: MIT Press; 2002. Arbib MA. The handbook of brain theory and neural networks. Cambridge, MA: MIT Press; 2002.
60.
Zurück zum Zitat Von der Malsburg C. The what and why of binding: the modeler’s perspective. Neuron. 1999;24:95–104.PubMedCrossRef Von der Malsburg C. The what and why of binding: the modeler’s perspective. Neuron. 1999;24:95–104.PubMedCrossRef
61.
Zurück zum Zitat Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annl Rev Neurosci. 1995;18:555–86.CrossRef Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annl Rev Neurosci. 1995;18:555–86.CrossRef
62.
Zurück zum Zitat Berns GS, Cohen JD, Mintun MA. Brain regions responsive to novelty in the absence of awareness. Science. 1997;276:1272–5.PubMedCrossRef Berns GS, Cohen JD, Mintun MA. Brain regions responsive to novelty in the absence of awareness. Science. 1997;276:1272–5.PubMedCrossRef
63.
Zurück zum Zitat Barceló F, Periáñez JA, Knight RT. Think differently: a brain orienting response to task novelty. NeuroReport. 2002;13:1887–92.PubMedCrossRef Barceló F, Periáñez JA, Knight RT. Think differently: a brain orienting response to task novelty. NeuroReport. 2002;13:1887–92.PubMedCrossRef
64.
Zurück zum Zitat Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;4:483–94.CrossRef Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;4:483–94.CrossRef
65.
Zurück zum Zitat Redgrave P, Gurney K. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci. 2006;7:967–75.PubMedCrossRef Redgrave P, Gurney K. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci. 2006;7:967–75.PubMedCrossRef
66.
Zurück zum Zitat Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.PubMed Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.PubMed
67.
Zurück zum Zitat Gros C, Kaczor G. Learning in cognitive systems with autonomous dynamics. In: Proceedings of the 2008 international conference on cognitive systems, Karlsruhe; 2008. Gros C, Kaczor G. Learning in cognitive systems with autonomous dynamics. In: Proceedings of the 2008 international conference on cognitive systems, Karlsruhe; 2008.
68.
Zurück zum Zitat Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13:411–30.PubMedCrossRef Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13:411–30.PubMedCrossRef
69.
Zurück zum Zitat Choi S, Cichocki A, Park HM, Lee SY. Blind source separation and independent component analysis: a review. Neural Inform Process. 2005;6:1–57. Choi S, Cichocki A, Park HM, Lee SY. Blind source separation and independent component analysis: a review. Neural Inform Process. 2005;6:1–57.
70.
Zurück zum Zitat Földiák P. Forming sparse representations by local anti-Hebbian learning. Biol Cybernet. 1990;64:165–70.CrossRef Földiák P. Forming sparse representations by local anti-Hebbian learning. Biol Cybernet. 1990;64:165–70.CrossRef
71.
Zurück zum Zitat Butko N, Triesch J. Learning sensory representations with intrinsic plasticity. Neurocomputing. 2007;70:1130–8.CrossRef Butko N, Triesch J. Learning sensory representations with intrinsic plasticity. Neurocomputing. 2007;70:1130–8.CrossRef
73.
Zurück zum Zitat Haykin S. Neural networks: a comprehensive foundation. Upper Saddle River, NJ: Prentice Hall; 1994. Haykin S. Neural networks: a comprehensive foundation. Upper Saddle River, NJ: Prentice Hall; 1994.
74.
Zurück zum Zitat Dreyfus G. Neural networks: methodology and applications. Berlin: Springer; 2005. Dreyfus G. Neural networks: methodology and applications. Berlin: Springer; 2005.
Metadaten
Titel
Cognitive Computation with Autonomously Active Neural Networks: An Emerging Field
verfasst von
Claudius Gros
Publikationsdatum
01.03.2009
Verlag
Springer-Verlag
Erschienen in
Cognitive Computation / Ausgabe 1/2009
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-008-9000-9

Weitere Artikel der Ausgabe 1/2009

Cognitive Computation 1/2009 Zur Ausgabe