Skip to main content
Erschienen in: Cognitive Computation 6/2015

01.12.2015

V4 Neural Network Model for Shape-Based Feature Extraction and Object Discrimination

verfasst von: Hui Wei, Zheng Dong

Erschienen in: Cognitive Computation | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Visual area V4 plays an important role in the neural mechanism of shape recognition. V4 neurons exhibit selectivity for the orientation and curvature of boundary fragments. In this paper, we propose a novel neural network model of V4 for shape-based feature extraction and other vision tasks. The low-level layers of the model consist of computational units simulating simple cells and complex cells in the primary visual cortex. These layers extract preliminary visual features including edges and orientations. The V4 computational units calculate the entropy of the extracted features as a measure of visual saliency. The features around salient points are then selected and encoded with a layer of restricted Boltzmann machine to generate an intermediate representation of object shapes. The model is evaluated in shape distinction, feature detection, feature matching, and object discrimination experiments. The results demonstrate that this model generates discriminative local representation of object shapes. It shows a successful attempt to construct a computation model of visual object recognition in the brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell. 2000;22(12):1349–80.CrossRef Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell. 2000;22(12):1349–80.CrossRef
2.
Zurück zum Zitat Ettlinger G. “Object vision” and “spatial vision”: the neuropsychological evidence for the distinction. Cortex. 1990;26(3):319–41.CrossRefPubMed Ettlinger G. “Object vision” and “spatial vision”: the neuropsychological evidence for the distinction. Cortex. 1990;26(3):319–41.CrossRefPubMed
3.
Zurück zum Zitat Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106.PubMedCentralCrossRefPubMed Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106.PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RBH, Ungerleider LG. Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J Neurophysiol. 2009;101(2):688–700.PubMedCentralCrossRefPubMed Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RBH, Ungerleider LG. Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J Neurophysiol. 2009;101(2):688–700.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Gallant JL, Connor CE, Rakshit S, Lewis JW, Van Essen DC. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J Neurophysiol. 1996;76(4):2718–39.PubMed Gallant JL, Connor CE, Rakshit S, Lewis JW, Van Essen DC. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J Neurophysiol. 1996;76(4):2718–39.PubMed
6.
Zurück zum Zitat Pasupathy A, Connor CE. Shape representation in area V4: position-specific tuning for boundary conformation. J Neurophysiol. 2001;86(5):2505–19.PubMed Pasupathy A, Connor CE. Shape representation in area V4: position-specific tuning for boundary conformation. J Neurophysiol. 2001;86(5):2505–19.PubMed
7.
Zurück zum Zitat David SV, Hayden BY, Gallant JL. Spectral receptive field properties explain shape selectivity in area V4. J Neurophysiol. 2006;96(6):3492–505.CrossRefPubMed David SV, Hayden BY, Gallant JL. Spectral receptive field properties explain shape selectivity in area V4. J Neurophysiol. 2006;96(6):3492–505.CrossRefPubMed
8.
Zurück zum Zitat Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, Poggio T. A model of V4 shape selectivity and invariance. J Neurophysiol. 2007;98(3):1733–50.CrossRefPubMed Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, Poggio T. A model of V4 shape selectivity and invariance. J Neurophysiol. 2007;98(3):1733–50.CrossRefPubMed
9.
Zurück zum Zitat Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.CrossRefPubMed Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.CrossRefPubMed
10.
Zurück zum Zitat Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2009;2(1):1–127.CrossRef Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2009;2(1):1–127.CrossRef
11.
Zurück zum Zitat Krizhevsky A, Sutskever Il, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–105. Krizhevsky A, Sutskever Il, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–105.
12.
Zurück zum Zitat Boureau Y-L, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the international conference on machine learning. 2010. p. 111–8. Boureau Y-L, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the international conference on machine learning. 2010. p. 111–8.
13.
Zurück zum Zitat Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18(1):193–222.CrossRefPubMed Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18(1):193–222.CrossRefPubMed
14.
Zurück zum Zitat Sasaki Y, Vanduffel W, Knutsen T, Tyler C, Tootell R. Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proc Natl Acad Sci USA. 2005;102(8):3159–63.PubMedCentralCrossRefPubMed Sasaki Y, Vanduffel W, Knutsen T, Tyler C, Tootell R. Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proc Natl Acad Sci USA. 2005;102(8):3159–63.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Hinton G. A practical guide to training restricted Boltzmann machines. Momentum. 2010;9(1):926. Hinton G. A practical guide to training restricted Boltzmann machines. Momentum. 2010;9(1):926.
16.
Zurück zum Zitat Pasupathy A, Connor CE. Responses to contour features in macaque area V4. J Neurophysiol. 1999;82(5):2490–502.PubMed Pasupathy A, Connor CE. Responses to contour features in macaque area V4. J Neurophysiol. 1999;82(5):2490–502.PubMed
17.
Zurück zum Zitat Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell. 2005;27(10):1615–30.CrossRefPubMed Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell. 2005;27(10):1615–30.CrossRefPubMed
18.
Zurück zum Zitat Lowe DG. Object recognition from local scale-invariant features. In: Proceedings of the IEEE international conference on computer vision, volume 2. IEEE, 1999. p. 1150–57. Lowe DG. Object recognition from local scale-invariant features. In: Proceedings of the IEEE international conference on computer vision, volume 2. IEEE, 1999. p. 1150–57.
19.
Zurück zum Zitat Vedaldi A, Fulkerson B. Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the international conference on multimedia. ACM, 2010. p. 1469–72. Vedaldi A, Fulkerson B. Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the international conference on multimedia. ACM, 2010. p. 1469–72.
20.
Zurück zum Zitat Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst. 2007;106(1):59–70.CrossRef Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst. 2007;106(1):59–70.CrossRef
21.
Zurück zum Zitat Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of the IEEE international conference on computer vision, volume 2. IEEE, 2005. p. 1458–65. Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of the IEEE international conference on computer vision, volume 2. IEEE, 2005. p. 1458–65.
22.
Zurück zum Zitat Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2. IEEE, 2006. p. 2169–78. Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2. IEEE, 2006. p. 2169–78.
23.
Zurück zum Zitat Zhang H, Berg AC, Maire M, Malik J. SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2. IEEE, 2006. p. 2126–36. Zhang H, Berg AC, Maire M, Malik J. SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2. IEEE, 2006. p. 2126–36.
24.
Zurück zum Zitat Wang G, Zhang Y, Fei-Fei L. Using dependent regions for object categorization in a generative framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2. IEEE, 2006. p. 1597–604. Wang G, Zhang Y, Fei-Fei L. Using dependent regions for object categorization in a generative framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2. IEEE, 2006. p. 1597–604.
25.
Zurück zum Zitat Bosch A, Zisserman A, Munoz X. Image classification using random forests and ferns. In: Proceedings of the IEEE international conference on computer vision. IEEE, 2007. p. 1–8. Bosch A, Zisserman A, Munoz X. Image classification using random forests and ferns. In: Proceedings of the IEEE international conference on computer vision. IEEE, 2007. p. 1–8.
26.
Zurück zum Zitat Boiman O, Shechtman E, Irani M. In defense of nearest-neighbor based image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 2008. p. 1–8. Boiman O, Shechtman E, Irani M. In defense of nearest-neighbor based image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 2008. p. 1–8.
27.
Zurück zum Zitat Liu B-D, Wang Y-X, Zhang Y-J, Shen B. Learning dictionary on manifolds for image classification. Pattern Recogn. 2013;46(7):1879–90.CrossRef Liu B-D, Wang Y-X, Zhang Y-J, Shen B. Learning dictionary on manifolds for image classification. Pattern Recogn. 2013;46(7):1879–90.CrossRef
28.
Zurück zum Zitat Heo B, Jeong H, Kim J, Choi S-Il, Choi JY. Weighted pooling based on visual saliency for image classification. In: Advances in visual computing. Springer, 2014. p. 647–657. Heo B, Jeong H, Kim J, Choi S-Il, Choi JY. Weighted pooling based on visual saliency for image classification. In: Advances in visual computing. Springer, 2014. p. 647–657.
29.
Zurück zum Zitat Wei H, Li H. Shape description and recognition method inspired by the primary visual cortex. Cogn Comput. 2014;6(2):164–74.CrossRef Wei H, Li H. Shape description and recognition method inspired by the primary visual cortex. Cogn Comput. 2014;6(2):164–74.CrossRef
30.
Zurück zum Zitat Wei H, Li Q, Dong Z. Learning and representing object shape through an array of orientation columns. IEEE Trans Neural Netw Learn Syst. 2014;25(7):1346–58.CrossRef Wei H, Li Q, Dong Z. Learning and representing object shape through an array of orientation columns. IEEE Trans Neural Netw Learn Syst. 2014;25(7):1346–58.CrossRef
31.
Zurück zum Zitat Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput. 2013;7(1):20–33.CrossRef Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput. 2013;7(1):20–33.CrossRef
Metadaten
Titel
V4 Neural Network Model for Shape-Based Feature Extraction and Object Discrimination
verfasst von
Hui Wei
Zheng Dong
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2015
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-015-9361-9

Weitere Artikel der Ausgabe 6/2015

Cognitive Computation 6/2015 Zur Ausgabe