Skip to main content
Erschienen in: Cognitive Computation 2/2017

27.02.2017

Dolphin Swarm Extreme Learning Machine

verfasst von: Tianqi Wu, Min Yao, Jianhua Yang

Erschienen in: Cognitive Computation | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a novel learning algorithm for a single hidden-layer feedforward neural network, the extreme learning machine has attracted much research attention for its fast training speed and good generalization performances. Instead of iteratively tuning the parameters, the extreme machine can be seen as a linear optimization problem by randomly generating the input weights and hidden biases. However, the random determination of the input weights and hidden biases may bring non-optimal parameters, which have a negative impact on the final results or need more hidden nodes for the neural network. To overcome the above drawbacks caused by the non-optimal input weights and hidden biases, we propose a new hybrid learning algorithm named dolphin swarm algorithm extreme learning machine adopting the dolphin swarm algorithm to optimize the input weights and hidden biases efficiently. Each set of input weights and hidden biases is encoded into one vector, namely the dolphin. The dolphins are evaluated by root mean squared error and updated by the four pivotal phases of the dolphin swarm algorithm. Eventually, we will obtain an optimal set of input weights and hidden biases. To evaluate the effectiveness of our method, we compare the proposed algorithm with the standard extreme learning machine and three state-of-the-art methods, which are the particle swarm optimization extreme learning machine, evolutionary extreme learning machine, and self-adaptive evolutionary extreme learning machine, under 13 benchmark datasets obtained from the University of California Irvine Machine Learning Repository. The experimental results demonstrate that the proposed method can achieve superior generalization performances than all the compared algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Networks, 2004. Proceedings. 2004 I.E. International Joint Conference on. Vol. 2. IEEE, 2004. Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Networks, 2004. Proceedings. 2004 I.E. International Joint Conference on. Vol. 2. IEEE, 2004.
2.
Zurück zum Zitat Huang G-B, Siew C-K. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24. Huang G-B, Siew C-K. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24.
3.
Zurück zum Zitat Huang, Guang-Bin, and Chee-Kheong Siew. Extreme learning machine: RBF network case. Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. Vol. 2. IEEE, 2004. Huang, Guang-Bin, and Chee-Kheong Siew. Extreme learning machine: RBF network case. Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. Vol. 2. IEEE, 2004.
4.
Zurück zum Zitat Huang G-B, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks. 2006;17(4):879–92.CrossRefPubMed Huang G-B, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks. 2006;17(4):879–92.CrossRefPubMed
5.
Zurück zum Zitat Huang G-B, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70(16):3056–62.CrossRef Huang G-B, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70(16):3056–62.CrossRef
6.
Zurück zum Zitat Duan L, et al. A voting optimized strategy based on ELM for improving classification of motor imagery BCI data. Cogn Comput. 2014;6.3:477–83.CrossRef Duan L, et al. A voting optimized strategy based on ELM for improving classification of motor imagery BCI data. Cogn Comput. 2014;6.3:477–83.CrossRef
7.
Zurück zum Zitat Akusok A, et al. A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classification. Cogn Comput. 2014;6(3):432–45.CrossRef Akusok A, et al. A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classification. Cogn Comput. 2014;6(3):432–45.CrossRef
8.
Zurück zum Zitat Cao K, et al. Classification of uncertain data streams based on extreme learning machine. Cogn Comput. 2015;7.1:150–60.CrossRef Cao K, et al. Classification of uncertain data streams based on extreme learning machine. Cogn Comput. 2015;7.1:150–60.CrossRef
9.
Zurück zum Zitat Zhao Z, et al. A class incremental extreme learning machine for activity recognition. Cogn Comput. 2014;6(3):423–31.CrossRef Zhao Z, et al. A class incremental extreme learning machine for activity recognition. Cogn Comput. 2014;6(3):423–31.CrossRef
10.
Zurück zum Zitat Zhang S, et al. Fast image recognition based on independent component analysis and extreme learning machine. Cogn Comput. 2014;6.3:405–22.CrossRef Zhang S, et al. Fast image recognition based on independent component analysis and extreme learning machine. Cogn Comput. 2014;6.3:405–22.CrossRef
11.
Zurück zum Zitat He B, et al. Fast face recognition via sparse coding and extreme learning machine. Cogn Comput. 2014;6(2):264–77. He B, et al. Fast face recognition via sparse coding and extreme learning machine. Cogn Comput. 2014;6(2):264–77.
12.
Zurück zum Zitat Xie SJ, et al. Feature component-based extreme learning machines for finger vein recognition. Cogn Comput. 2014;6.3:446–61.CrossRef Xie SJ, et al. Feature component-based extreme learning machines for finger vein recognition. Cogn Comput. 2014;6.3:446–61.CrossRef
13.
Zurück zum Zitat Vong C-M, et al. Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cogn Comput. 2015;7.3:381–91.CrossRef Vong C-M, et al. Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cogn Comput. 2015;7.3:381–91.CrossRef
14.
Zurück zum Zitat Xia S-X, et al. A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cogn Comput. 2015;7.1:74–85.CrossRef Xia S-X, et al. A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cogn Comput. 2015;7.1:74–85.CrossRef
15.
Zurück zum Zitat Sachnev V, et al. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2015;7.1:103–10.CrossRef Sachnev V, et al. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2015;7.1:103–10.CrossRef
16.
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1):489–501.CrossRef Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1):489–501.CrossRef
17.
Zurück zum Zitat Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks. 1994;5(6):989–93.CrossRefPubMed Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks. 1994;5(6):989–93.CrossRefPubMed
18.
Zurück zum Zitat Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2(2):164–8.CrossRef Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2(2):164–8.CrossRef
19.
Zurück zum Zitat Zhu Q-Y, et al. Evolutionary extreme learning machine. Pattern Recogn. 2005;38(10):1759–63.CrossRef Zhu Q-Y, et al. Evolutionary extreme learning machine. Pattern Recogn. 2005;38(10):1759–63.CrossRef
20.
Zurück zum Zitat Cao J, Lin Z, Huang G-B. Self-adaptive evolutionary extreme learning machine. Neural Process Lett. 2012;36(3):285–305.CrossRef Cao J, Lin Z, Huang G-B. Self-adaptive evolutionary extreme learning machine. Neural Process Lett. 2012;36(3):285–305.CrossRef
21.
Zurück zum Zitat Xu, You, and Yang Shu. Evolutionary extreme learning machine–based on particle swarm optimization. International Symposium on Neural Networks. Springer Berlin Heidelberg, 2006. Xu, You, and Yang Shu. Evolutionary extreme learning machine–based on particle swarm optimization. International Symposium on Neural Networks. Springer Berlin Heidelberg, 2006.
22.
Zurück zum Zitat Saraswathi S, et al. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011;8.2:452–63.CrossRef Saraswathi S, et al. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011;8.2:452–63.CrossRef
23.
Zurück zum Zitat Silva, Danielle NG, Luciano DS Pacifico, and Teresa Bernarda Ludermir. An evolutionary extreme learning machine based on group search optimization. 2011 I.E. Congress of Evolutionary Computation (CEC). IEEE, 2011. Silva, Danielle NG, Luciano DS Pacifico, and Teresa Bernarda Ludermir. An evolutionary extreme learning machine based on group search optimization. 2011 I.E. Congress of Evolutionary Computation (CEC). IEEE, 2011.
24.
Zurück zum Zitat Drigo, M., V. Maniezzo, and A. Colorni. The ant system: optimization by a colony of cooperation agents. IEEE Trans Syst, Man, Cybernet Part B. 1996: 29–41. Drigo, M., V. Maniezzo, and A. Colorni. The ant system: optimization by a colony of cooperation agents. IEEE Trans Syst, Man, Cybernet Part B. 1996: 29–41.
25.
Zurück zum Zitat Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput. 1997;1.1:53–66.CrossRef Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput. 1997;1.1:53–66.CrossRef
26.
Zurück zum Zitat Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39.CrossRef Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39.CrossRef
27.
Zurück zum Zitat Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. International Fuzzy Systems Association World Congress. Springer Berlin Heidelberg, 2007. Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. International Fuzzy Systems Association World Congress. Springer Berlin Heidelberg, 2007.
28.
Zurück zum Zitat Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput. 2008;8(1):687–97.CrossRef Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput. 2008;8(1):687–97.CrossRef
29.
Zurück zum Zitat Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput. 2009;214(1):108–32. Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput. 2009;214(1):108–32.
30.
Zurück zum Zitat Yang X-S. Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation. 2010;2(2):78–84.CrossRef Yang X-S. Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation. 2010;2(2):78–84.CrossRef
31.
Zurück zum Zitat Yang, Xin-She Nature-inspired metaheuristic algorithms. Luniver Press. Beckington. 2008. Yang, Xin-She Nature-inspired metaheuristic algorithms. Luniver Press. Beckington. 2008.
32.
Zurück zum Zitat Taormina R, Chau K-W. Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol. 2015;529:1617–32.CrossRef Taormina R, Chau K-W. Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol. 2015;529:1617–32.CrossRef
33.
Zurück zum Zitat Zhang J, Chau K-W. Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. Journal of Universal Computer Science. 2009;15(4):840–58. Zhang J, Chau K-W. Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. Journal of Universal Computer Science. 2009;15(4):840–58.
34.
Zurück zum Zitat Tian-qi WU, Min YAO, Jian-hua YANG. Dolphin swarm algorithm. Frontiers of Information Technology & Electronic Engineering. 2016;707–729 Tian-qi WU, Min YAO, Jian-hua YANG. Dolphin swarm algorithm. Frontiers of Information Technology & Electronic Engineering. 2016;707–729
35.
Zurück zum Zitat Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans Evol Comput. 1999;3(2):82–102.CrossRef Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans Evol Comput. 1999;3(2):82–102.CrossRef
37.
Zurück zum Zitat Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.CrossRef Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.CrossRef
38.
Zurück zum Zitat Huang G-B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7.3:263–78.CrossRef Huang G-B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7.3:263–78.CrossRef
39.
Zurück zum Zitat Huang G-B, et al. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2012;42.2:513–29.CrossRef Huang G-B, et al. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2012;42.2:513–29.CrossRef
Metadaten
Titel
Dolphin Swarm Extreme Learning Machine
verfasst von
Tianqi Wu
Min Yao
Jianhua Yang
Publikationsdatum
27.02.2017
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2017
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9451-y

Weitere Artikel der Ausgabe 2/2017

Cognitive Computation 2/2017 Zur Ausgabe