Skip to main content
Erschienen in: Cognitive Computation 6/2018

01.08.2018

Combining Non-negative Matrix Factorization and Sparse Coding for Functional Brain Overlapping Community Detection

verfasst von: X. Li, Z. Hu, H. Wang

Erschienen in: Cognitive Computation | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The functional system of the human brain can be viewed as a complex network. Among various features of the brain functional network, community structure has raised significant interest in recent years. Increasing evidence has revealed that most realistic complex networks have an overlapping community structure. However, the overlapping community structure of the brain functional network has not been adequately studied. In this paper, we propose a novel method called sparse symmetric non-negative matrix factorization (ssNMF) to detect the overlapping community structure of the brain functional network. Specifically, it is formulated by combining the effective techniques of non-negative matrix factorization and sparse coding. Besides, the non-negative adaptive sparse representation is applied to construct the whole-brain functional network, based on which ssNMF is performed to detect the community structure. Both simulated and real functional magnetic resonance imaging data are used to evaluate ssNMF. The experimental results demonstrate that the proposed ssNMF method is capable of accurately and stably detecting the underlying overlapping community structure. Moreover, the physiological interpretation of the overlapping community structure detected by ssNMF is straightforward. This novel framework, we think, provides an effective tool to study overlapping community structure and facilitates the understanding of the network organization of the functional human brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.PubMedCrossRef Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.PubMedCrossRef
3.
Zurück zum Zitat Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 2014;17(5): 652–660.PubMedCrossRef Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 2014;17(5): 652–660.PubMedCrossRef
6.
Zurück zum Zitat Ziemke T, Lowe R. On the role of emotion in embodied cognitive architectures: From organisms to robots. Cogn Comput 2009;1(1):104–117.CrossRef Ziemke T, Lowe R. On the role of emotion in embodied cognitive architectures: From organisms to robots. Cogn Comput 2009;1(1):104–117.CrossRef
7.
Zurück zum Zitat Yan X. Dissociated emergent response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots. Cogn Comput 2011;3(2):367–373.CrossRef Yan X. Dissociated emergent response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots. Cogn Comput 2011;3(2):367–373.CrossRef
8.
Zurück zum Zitat Mohan V, Morasso P, Sandini G, Kasderidis S. Inference through embodied simulation in cognitive robots. Cogn Comput 2013;5(3):355–382.CrossRef Mohan V, Morasso P, Sandini G, Kasderidis S. Inference through embodied simulation in cognitive robots. Cogn Comput 2013;5(3):355–382.CrossRef
9.
Zurück zum Zitat Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network organization of the human brain. Neuron 2011;72(4):665–678.PubMedPubMedCentralCrossRef Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network organization of the human brain. Neuron 2011;72(4):665–678.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N, Bullmore E. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 2012;59(4):3889–3900.PubMedCrossRef Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N, Bullmore E. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 2012;59(4):3889–3900.PubMedCrossRef
11.
Zurück zum Zitat Thirion B, Dodel S, Poline JB. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage 2006;29(1):321–327.PubMedCrossRef Thirion B, Dodel S, Poline JB. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage 2006;29(1):321–327.PubMedCrossRef
12.
Zurück zum Zitat van Den Heuvel M, Mandl R, Pol HH. Normalized cut group clustering of resting-state fMRI data. PloS ONE 2008;3(4):e2001.CrossRef van Den Heuvel M, Mandl R, Pol HH. Normalized cut group clustering of resting-state fMRI data. PloS ONE 2008;3(4):e2001.CrossRef
14.
Zurück zum Zitat Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.CrossRef Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.CrossRef
15.
Zurück zum Zitat Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep 2016;659:1–44.CrossRef Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep 2016;659:1–44.CrossRef
16.
Zurück zum Zitat Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005;435(7043):814.PubMedCrossRef Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005;435(7043):814.PubMedCrossRef
17.
Zurück zum Zitat Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 2009;31(2):260–274.PubMedCrossRef Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 2009;31(2):260–274.PubMedCrossRef
18.
Zurück zum Zitat Xu C, Tao D, Xu C. Multi-view learning with incomplete views. IEEE Trans Image Process 2015;24 (12):5812–5825.PubMedCrossRef Xu C, Tao D, Xu C. Multi-view learning with incomplete views. IEEE Trans Image Process 2015;24 (12):5812–5825.PubMedCrossRef
19.
Zurück zum Zitat Liu W, Yang X, Tao D, Cheng J, Tang Y. Multiview dimension reduction via Hessian multiset canonical correlations. Inf Fusion 2018;41:119–128.CrossRef Liu W, Yang X, Tao D, Cheng J, Tang Y. Multiview dimension reduction via Hessian multiset canonical correlations. Inf Fusion 2018;41:119–128.CrossRef
20.
Zurück zum Zitat Ding C, He X, Simon HD. On the equivalence of non-negative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining; 2005. p. 606–610. Ding C, He X, Simon HD. On the equivalence of non-negative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining; 2005. p. 606–610.
21.
Zurück zum Zitat Xie J, Kelley S, Szymanski BK. Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput Surv 2013;45(4):43.CrossRef Xie J, Kelley S, Szymanski BK. Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput Surv 2013;45(4):43.CrossRef
22.
Zurück zum Zitat Zarei M, Izadi D, Samani KA. Detecting overlapping community structure of networks based on vertex–vertex correlations. J Stat Mech-Theory Exp 2009;11:P11013.CrossRef Zarei M, Izadi D, Samani KA. Detecting overlapping community structure of networks based on vertex–vertex correlations. J Stat Mech-Theory Exp 2009;11:P11013.CrossRef
23.
Zurück zum Zitat Psorakis I, Roberts S, Ebden M, Sheldon B. Overlapping community detection using bayesian non-negative matrix factorization. Phys Rev E 2011;83(6):066114.CrossRef Psorakis I, Roberts S, Ebden M, Sheldon B. Overlapping community detection using bayesian non-negative matrix factorization. Phys Rev E 2011;83(6):066114.CrossRef
24.
Zurück zum Zitat Yang J, Leskovec J. Overlapping community detection at scale: a non-negative matrix factorization approach. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining; 2013. p. 587–596. Yang J, Leskovec J. Overlapping community detection at scale: a non-negative matrix factorization approach. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining; 2013. p. 587–596.
25.
Zurück zum Zitat Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using non-negative matrix factorization. Data Min Knowl Discov 2011;22(3):493–521.CrossRef Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using non-negative matrix factorization. Data Min Knowl Discov 2011;22(3):493–521.CrossRef
26.
Zurück zum Zitat Li X, Hu Z, Wang H. Overlapping community structure detection of brain functional network using non-negative matrix factorization. In: International Conference on Neural Information Processing (ICONIP); 2016. p. 140–147. Li X, Hu Z, Wang H. Overlapping community structure detection of brain functional network using non-negative matrix factorization. In: International Conference on Neural Information Processing (ICONIP); 2016. p. 140–147.
27.
Zurück zum Zitat Chen S, Xin Y, Luo B. Action-based pedestrian identification via hierarchical matching pursuit and order preserving sparse coding. Cogn Comput 2016;8(5):797–805.CrossRef Chen S, Xin Y, Luo B. Action-based pedestrian identification via hierarchical matching pursuit and order preserving sparse coding. Cogn Comput 2016;8(5):797–805.CrossRef
28.
Zurück zum Zitat Lv L, Zhao D, Deng Q. A semi-supervised predictive sparse decomposition based on task-driven dictionary learning. Cogn Comput 2017;9(1):115–124.CrossRef Lv L, Zhao D, Deng Q. A semi-supervised predictive sparse decomposition based on task-driven dictionary learning. Cogn Comput 2017;9(1):115–124.CrossRef
29.
Zurück zum Zitat Liu M, Xu C, Luo Y, Xu C, Wen Y, Tao D. Cost-sensitive feature selection by optimizing F-measures. IEEE Trans Image Process 2018;27(3):1323–1335.CrossRef Liu M, Xu C, Luo Y, Xu C, Wen Y, Tao D. Cost-sensitive feature selection by optimizing F-measures. IEEE Trans Image Process 2018;27(3):1323–1335.CrossRef
30.
Zurück zum Zitat Li Y, Yu Z, Bi N, Xu Y, Gu Z, Amari S. Sparse representation for brain signal processing: a tutorial on methods and applications. IEEE Signal Process Mag 2014;31(3):96–106.CrossRef Li Y, Yu Z, Bi N, Xu Y, Gu Z, Amari S. Sparse representation for brain signal processing: a tutorial on methods and applications. IEEE Signal Process Mag 2014;31(3):96–106.CrossRef
31.
Zurück zum Zitat Xie J, Douglas PK, Wu YN, Brody AL, Anderson AE. Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. J Neurosci Method 2017;282:81–94.CrossRef Xie J, Douglas PK, Wu YN, Brody AL, Anderson AE. Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. J Neurosci Method 2017;282:81–94.CrossRef
32.
Zurück zum Zitat Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–541.PubMedCrossRef Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–541.PubMedCrossRef
33.
Zurück zum Zitat Li X, Hu Z, Wang H. Sparse-network based framework for detecting the overlapping community structure of brain functional network. In: Advances in Brain Inspired Cognitive Systems; 2016. p. 355–365. Li X, Hu Z, Wang H. Sparse-network based framework for detecting the overlapping community structure of brain functional network. In: Advances in Brain Inspired Cognitive Systems; 2016. p. 355–365.
34.
Zurück zum Zitat Lee D, Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401(6755): 788–791.PubMedCrossRef Lee D, Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401(6755): 788–791.PubMedCrossRef
35.
Zurück zum Zitat Guan N, Tao D, Luo Z, Shawe-Taylor J. 2012. MahNMF: Manhattan non-negative matrix factorization. arXiv:1207.3438. Guan N, Tao D, Luo Z, Shawe-Taylor J. 2012. MahNMF: Manhattan non-negative matrix factorization. arXiv:1207.​3438.
36.
Zurück zum Zitat Liu T, Gong M, Tao D. Large-cone non-negative matrix factorization. IEEE Trans Neural Netw Learn Syst 2017;28(9):2129– 2142.PubMed Liu T, Gong M, Tao D. Large-cone non-negative matrix factorization. IEEE Trans Neural Netw Learn Syst 2017;28(9):2129– 2142.PubMed
37.
Zurück zum Zitat Shan D, Xu X, Liang T, Ding S. Rank-adaptive non-negative matrix factorization. Cogn Comput. 2018;10(3):506–515.CrossRef Shan D, Xu X, Liang T, Ding S. Rank-adaptive non-negative matrix factorization. Cogn Comput. 2018;10(3):506–515.CrossRef
38.
Zurück zum Zitat Padilla P, López M, Górriz J M, Ramirez J, Salas-Gonzalez D, Álvarez I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans Med Imaging 2012; 31(2):207–216.PubMedCrossRef Padilla P, López M, Górriz J M, Ramirez J, Salas-Gonzalez D, Álvarez I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans Med Imaging 2012; 31(2):207–216.PubMedCrossRef
39.
Zurück zum Zitat Wang Y, Zhang Y. Non-negative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng 2013;25(6):1336–1353.CrossRef Wang Y, Zhang Y. Non-negative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng 2013;25(6):1336–1353.CrossRef
40.
Zurück zum Zitat Zhang Z, Wang Y, Ahn YY. Overlapping community detection in complex networks using symmetric binary matrix factorization. Phys Rev E 2013;87(6):062803.CrossRef Zhang Z, Wang Y, Ahn YY. Overlapping community detection in complex networks using symmetric binary matrix factorization. Phys Rev E 2013;87(6):062803.CrossRef
41.
Zurück zum Zitat Zhang Y, Yeung DY. Overlapping community detection via bounded non-negative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2012. p. 606–614. Zhang Y, Yeung DY. Overlapping community detection via bounded non-negative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2012. p. 606–614.
42.
Zurück zum Zitat Zhang Z, Xu Y, Yang J, Li X, Zhang D. A survey of sparse representation: algorithms and applications. IEEE Access 2015;3:490–530.CrossRef Zhang Z, Xu Y, Yang J, Li X, Zhang D. A survey of sparse representation: algorithms and applications. IEEE Access 2015;3:490–530.CrossRef
43.
Zurück zum Zitat Donoho DL, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via ℓ 1 minimization. Proc Natl Acad Sci 2003;100(5):2197–2202.PubMedCrossRefPubMedCentral Donoho DL, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via 1 minimization. Proc Natl Acad Sci 2003;100(5):2197–2202.PubMedCrossRefPubMedCentral
44.
Zurück zum Zitat Guo S, Wang Z, Ruan Q. Enhancing sparsity via ℓ p(0 < p < 1) minimization for robust face recognition. Neurocomputing 2013;99:592–602.CrossRef Guo S, Wang Z, Ruan Q. Enhancing sparsity via p(0 < p < 1) minimization for robust face recognition. Neurocomputing 2013;99:592–602.CrossRef
45.
Zurück zum Zitat Bengio S, Pereira F, Singer Y, Strelow D. Group sparse coding. In: Advances in Neural Information Processing Systems; 2009. p. 82–89. Bengio S, Pereira F, Singer Y, Strelow D. Group sparse coding. In: Advances in Neural Information Processing Systems; 2009. p. 82–89.
46.
Zurück zum Zitat Liu W, Zha Z, Wang Y, Lu K, Tao D. P-Laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 2016;63(8):5120–5129. Liu W, Zha Z, Wang Y, Lu K, Tao D. P-Laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 2016;63(8):5120–5129.
47.
Zurück zum Zitat Hoyer PO. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing; 2002. p. 557–565. Hoyer PO. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing; 2002. p. 557–565.
48.
Zurück zum Zitat Hoyer PO. Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 2004;5(Nov): 1457–1469. Hoyer PO. Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 2004;5(Nov): 1457–1469.
49.
Zurück zum Zitat Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005;21(21):3970–3975.PubMedCrossRef Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005;21(21):3970–3975.PubMedCrossRef
50.
Zurück zum Zitat Grave E, Obozinski GR. Bach FR. Trace lasso: a trace norm regularization for correlated designs. In: Advances in Neural Information Processing Systems; 2011. p. 2187–2195. Grave E, Obozinski GR. Bach FR. Trace lasso: a trace norm regularization for correlated designs. In: Advances in Neural Information Processing Systems; 2011. p. 2187–2195.
51.
Zurück zum Zitat Lu C, Feng J, Lin Z, Yan S. Correlation adaptive subspace segmentation by trace lasso. In: IEEE International Conference on Computer Vision; 2013. p. 1345–1352. Lu C, Feng J, Lin Z, Yan S. Correlation adaptive subspace segmentation by trace lasso. In: IEEE International Conference on Computer Vision; 2013. p. 1345–1352.
52.
Zurück zum Zitat Li X, Wang H. Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering. Front Neurosci 2015;9:383.PubMedPubMedCentral Li X, Wang H. Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering. Front Neurosci 2015;9:383.PubMedPubMedCentral
53.
Zurück zum Zitat Lin CJ. On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Trans Neural Netw 2007;18(6):1589–1596.CrossRef Lin CJ. On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Trans Neural Netw 2007;18(6):1589–1596.CrossRef
54.
55.
Zurück zum Zitat Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 2008;2008(10):P10008.CrossRef Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 2008;2008(10):P10008.CrossRef
56.
Zurück zum Zitat Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 2000;22(8): 888–905.CrossRef Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 2000;22(8): 888–905.CrossRef
57.
Zurück zum Zitat Frey BJ, Dueck D. Clustering by passing messages between data points. Science 2007;315(5814):972–976.PubMedCrossRef Frey BJ, Dueck D. Clustering by passing messages between data points. Science 2007;315(5814):972–976.PubMedCrossRef
58.
Zurück zum Zitat Eavani H, Satterthwaite TD, Filipovych R, Gur RE, Gur RC, Davatzikos C. Identifying sparse connectivity patterns in the brain using resting-state fMRI. Neuroimage 2015;105:286– 299.PubMedCrossRef Eavani H, Satterthwaite TD, Filipovych R, Gur RE, Gur RC, Davatzikos C. Identifying sparse connectivity patterns in the brain using resting-state fMRI. Neuroimage 2015;105:286– 299.PubMedCrossRef
59.
Zurück zum Zitat Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW. Network modelling methods for fMRI. Neuroimage 2011;54(2):875–891.PubMedCrossRef Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW. Network modelling methods for fMRI. Neuroimage 2011;54(2):875–891.PubMedCrossRef
60.
Zurück zum Zitat Lovász L, Plummer MD. Matching theory. Ann Discret Math. 1986;29:1–543. Lovász L, Plummer MD. Matching theory. Ann Discret Math. 1986;29:1–543.
61.
Zurück zum Zitat Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining; 2013. p. 587–596. Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining; 2013. p. 587–596.
62.
Zurück zum Zitat McDaid AF, Greene D, Hurley N. 2011. Normalized mutual information to evaluate overlapping community finding algorithms. arXiv:1110.2515. McDaid AF, Greene D, Hurley N. 2011. Normalized mutual information to evaluate overlapping community finding algorithms. arXiv:1110.​2515.
63.
Zurück zum Zitat Gregory S. Fuzzy overlapping communities in networks. J Stat Mech: Theory Exp 2011;2011(02):P02017.CrossRef Gregory S. Fuzzy overlapping communities in networks. J Stat Mech: Theory Exp 2011;2011(02):P02017.CrossRef
64.
Zurück zum Zitat Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci 2010;107(10):4734–4739.PubMedCrossRefPubMedCentral Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci 2010;107(10):4734–4739.PubMedCrossRefPubMedCentral
65.
Zurück zum Zitat Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 2014;1:140049.PubMedPubMedCentralCrossRef Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 2014;1:140049.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Chen B, Xu T, Zhou C, Wang L, Yang N, Wang Z. Individual variability and test–retest reliability revealed by ten repeated resting-state brain scans over one month. PloS ONE 2015;10:e0144963.PubMedPubMedCentralCrossRef Chen B, Xu T, Zhou C, Wang L, Yang N, Wang Z. Individual variability and test–retest reliability revealed by ten repeated resting-state brain scans over one month. PloS ONE 2015;10:e0144963.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Yan C, Zang Y. DPARSF: A matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13. Yan C, Zang Y. DPARSF: A matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13.
68.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273–289.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273–289.PubMedCrossRef
69.
Zurück zum Zitat Campello RJGB, Hruschka ER. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Set Syst 2006;157(21):2858–2875.CrossRef Campello RJGB, Hruschka ER. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Set Syst 2006;157(21):2858–2875.CrossRef
70.
Zurück zum Zitat Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 2008;42:1178–1184.PubMedCrossRef Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 2008;42:1178–1184.PubMedCrossRef
71.
Zurück zum Zitat van den Heuvel MP, Pol HEH. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20(8):519–534.CrossRef van den Heuvel MP, Pol HEH. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20(8):519–534.CrossRef
72.
Zurück zum Zitat Isaacson R. The limbic system. Berlin: Springer Science & Business Media; 2013. Isaacson R. The limbic system. Berlin: Springer Science & Business Media; 2013.
73.
Zurück zum Zitat Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neurosci 2013;16(9):1348– 1355.PubMedCrossRef Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neurosci 2013;16(9):1348– 1355.PubMedCrossRef
74.
Zurück zum Zitat Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 2001;54(3):287–298.PubMedCrossRef Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 2001;54(3):287–298.PubMedCrossRef
75.
Zurück zum Zitat Yeo BTT, Krienen FM, Chee MWL, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 2014;88:212–227.PubMedCrossRef Yeo BTT, Krienen FM, Chee MWL, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 2014;88:212–227.PubMedCrossRef
76.
Zurück zum Zitat van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci 2013;17:683–696.CrossRef van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci 2013;17:683–696.CrossRef
78.
Zurück zum Zitat Kong D, Fujimaki R, Liu J, Nie F, Ding C. Exclusive feature learning on arbitrary structures via ℓ 1,2-norm. In: Advances in Neural Information Processing Systems; 2014. p. 1655–1663. Kong D, Fujimaki R, Liu J, Nie F, Ding C. Exclusive feature learning on arbitrary structures via 1,2-norm. In: Advances in Neural Information Processing Systems; 2014. p. 1655–1663.
79.
Zurück zum Zitat He Z, Xie S, Zdunek R, Zhou G, Cichocki A. Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE Trans Neural Netw 2011;22(12):2117–2131.PubMedCrossRef He Z, Xie S, Zdunek R, Zhou G, Cichocki A. Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE Trans Neural Netw 2011;22(12):2117–2131.PubMedCrossRef
80.
Zurück zum Zitat Kuang D, Ding C, Park H. Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of the 2012 SIAM International Conference on Data Mining; 2012. p. 106–117. Kuang D, Ding C, Park H. Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of the 2012 SIAM International Conference on Data Mining; 2012. p. 106–117.
81.
Zurück zum Zitat Huang K, Sidiropoulos ND, Swami A. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans Signal Process 2014; 62 (1): 211– 224.CrossRef Huang K, Sidiropoulos ND, Swami A. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans Signal Process 2014; 62 (1): 211– 224.CrossRef
Metadaten
Titel
Combining Non-negative Matrix Factorization and Sparse Coding for Functional Brain Overlapping Community Detection
verfasst von
X. Li
Z. Hu
H. Wang
Publikationsdatum
01.08.2018
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9585-6

Weitere Artikel der Ausgabe 6/2018

Cognitive Computation 6/2018 Zur Ausgabe