Skip to main content
Erschienen in: Cognitive Computation 5/2019

13.06.2019

Improving the Recall Performance of a Brain Mimetic Microcircuit Model

verfasst von: Vassilis Cutsuridis

Erschienen in: Cognitive Computation | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recall performance of a well-established canonical microcircuit model of the hippocampus, a region of the mammalian brain that acts as a short-term memory, was systematically evaluated. All model cells were simplified compartmental models with complex ion channel dynamics. In addition to excitatory cells (pyramidal cells), four types of inhibitory cells were present: axo-axonic (axonic inhibition), basket (somatic inhibition), bistratified cells (proximal dendritic inhibition) and oriens lacunosum-moleculare (distal dendritic inhibition) cells. All cells’ firing was timed to an external theta rhythm paced into the model by external reciprocally oscillating inhibitory inputs originating from the medial septum. Excitatory input to the model originated from the region CA3 of the hippocampus and provided context and timing information for retrieval of previously stored memory patterns. Model mean recall quality was tested as the number of stored memory patterns was increased against selectively modulated feedforward and feedback excitatory and inhibitory pathways. From all modulated pathways, simulations showed recall performance was best when feedforward inhibition from bistratified cells to pyramidal cell dendrites is dynamically increased as stored memory patterns is increased with or without increased pyramidal cell feedback excitation to bistratified cells. The study furthers our understanding of how memories are retrieved by a brain microcircuit. The findings provide fundamental insights into the inner workings of learning and memory in the brain, which may lead to potential strategies for treatments in memory-related disorders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Amaral D, Lavenex P. Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J, editors. The hippocampus book. Oxford: University Press; 2007. p. 37–114. Amaral D, Lavenex P. Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J, editors. The hippocampus book. Oxford: University Press; 2007. p. 37–114.
2.
Zurück zum Zitat Amit DJ. Modeling brain function: the world of attractor neural networks. New York: Cambridge University Press; 1989.CrossRef Amit DJ. Modeling brain function: the world of attractor neural networks. New York: Cambridge University Press; 1989.CrossRef
3.
Zurück zum Zitat Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The hippocampus book. Oxford: University Press; 2007. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The hippocampus book. Oxford: University Press; 2007.
4.
Zurück zum Zitat Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci. 2004;24:8470–9.CrossRef Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci. 2004;24:8470–9.CrossRef
5.
Zurück zum Zitat Buckingham J, Willshaw D. On setting unit thresholds in an incompletely connected associative net. Network. 1993;4:441–59.CrossRef Buckingham J, Willshaw D. On setting unit thresholds in an incompletely connected associative net. Network. 1993;4:441–59.CrossRef
6.
Zurück zum Zitat Chamberland S, Topolnik L. Inhibitory control of hippocampal inhibitory neurons. Front Neurosci. 2012;6:165.CrossRef Chamberland S, Topolnik L. Inhibitory control of hippocampal inhibitory neurons. Front Neurosci. 2012;6:165.CrossRef
7.
Zurück zum Zitat Cutsuridis V, Hasselmo M. GABAergic modulation of gating, timing and theta phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus. 2012;22:1597–621.CrossRef Cutsuridis V, Hasselmo M. GABAergic modulation of gating, timing and theta phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus. 2012;22:1597–621.CrossRef
8.
Zurück zum Zitat Cutsuridis V, Poirazi P. A computational study on how theta modulated inhibition can account for the long temporal delays in the entorhinal-hippocampal loop. Neurobiol Learn Mem. 2015;120:69–83.CrossRef Cutsuridis V, Poirazi P. A computational study on how theta modulated inhibition can account for the long temporal delays in the entorhinal-hippocampal loop. Neurobiol Learn Mem. 2015;120:69–83.CrossRef
9.
Zurück zum Zitat Cutsuridis V, Wenneckers T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009;22(8):1120–8.CrossRef Cutsuridis V, Wenneckers T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009;22(8):1120–8.CrossRef
10.
Zurück zum Zitat Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus. 2010;20:423–46.PubMed Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus. 2010;20:423–46.PubMed
11.
Zurück zum Zitat de Luca E, Ravasenga T, Petrini EM, Polenghi A, Nieus T, Guazzi S, et al. Inter-synaptic lateral diffusion of GABAA receptors shapes inhibitory synaptic currents. Neuron. 2017;95(1):63–69.e5.CrossRef de Luca E, Ravasenga T, Petrini EM, Polenghi A, Nieus T, Guazzi S, et al. Inter-synaptic lateral diffusion of GABAA receptors shapes inhibitory synaptic currents. Neuron. 2017;95(1):63–69.e5.CrossRef
12.
Zurück zum Zitat Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6:347–470.CrossRef Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6:347–470.CrossRef
13.
Zurück zum Zitat Ganter P, Szucs P, Paulsen O, Somogyi P. Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus. 2004;14:232–43.CrossRef Ganter P, Szucs P, Paulsen O, Somogyi P. Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus. 2004;14:232–43.CrossRef
14.
Zurück zum Zitat Graham B, Willshaw D. Improving recall from an associative memory. Biol Cybern. 1995;72:337–46.CrossRef Graham B, Willshaw D. Improving recall from an associative memory. Biol Cybern. 1995;72:337–46.CrossRef
15.
Zurück zum Zitat Graham B, Willshaw D. Capacity and information efficiency of the associative net. Network. 1997;8:35–54.CrossRef Graham B, Willshaw D. Capacity and information efficiency of the associative net. Network. 1997;8:35–54.CrossRef
16.
Zurück zum Zitat Hasselmo M, Bodelon C, Wyble B. A proposed function of the hippocampal theta rhythm: separate phases of encoding and retrieval of prior learning. Neural Comput. 2002;14:793–817.CrossRef Hasselmo M, Bodelon C, Wyble B. A proposed function of the hippocampal theta rhythm: separate phases of encoding and retrieval of prior learning. Neural Comput. 2002;14:793–817.CrossRef
17.
Zurück zum Zitat Hines ML, Carnevale T. The NEURON simulation environment. Neural Comput. 1997;9:1179–209.CrossRef Hines ML, Carnevale T. The NEURON simulation environment. Neural Comput. 1997;9:1179–209.CrossRef
18.
Zurück zum Zitat Hunter R, Cobb S, Graham BP. Improving associative memory in a network of spiking neurons. In: Kurkova V, et al., editors. Lecture notes in computer science (LNCS 5164). Berlin Heidelberg: Springer-Verlag; 2008. p. 636–45. Hunter R, Cobb S, Graham BP. Improving associative memory in a network of spiking neurons. In: Kurkova V, et al., editors. Lecture notes in computer science (LNCS 5164). Berlin Heidelberg: Springer-Verlag; 2008. p. 636–45.
19.
Zurück zum Zitat Klausberger T, Magill PJ, Marton LF, David J, Roberts B, Cobden PM, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003;421:844–8.CrossRef Klausberger T, Magill PJ, Marton LF, David J, Roberts B, Cobden PM, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003;421:844–8.CrossRef
20.
Zurück zum Zitat Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7:41–7.CrossRef Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7:41–7.CrossRef
21.
Zurück zum Zitat Levy W. A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus. 1996;6:579–90.CrossRef Levy W. A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus. 1996;6:579–90.CrossRef
22.
Zurück zum Zitat Marr D. A simple theory of archicortex. Philos Trans R Soc Lond Ser B Biol Sci. 1971;262(841):23–81. Marr D. A simple theory of archicortex. Philos Trans R Soc Lond Ser B Biol Sci. 1971;262(841):23–81.
23.
Zurück zum Zitat Mendoza E, Galarraga E, Tapia D, Laville A, Hernandez-Echeagaray E, Bargas J. Differential induction of long term synaptic plasticity in inhibitory synapses of the hippocampus. Synapse. 2006;60(7):533–42.CrossRef Mendoza E, Galarraga E, Tapia D, Laville A, Hernandez-Echeagaray E, Bargas J. Differential induction of long term synaptic plasticity in inhibitory synapses of the hippocampus. Synapse. 2006;60(7):533–42.CrossRef
24.
25.
Zurück zum Zitat Pelletier JG, Lacaille JC. Long-term synaptic plasticity in hippocampal feedback inhibitory networks. Prog Brain Res. 2008;169:241–50.CrossRef Pelletier JG, Lacaille JC. Long-term synaptic plasticity in hippocampal feedback inhibitory networks. Prog Brain Res. 2008;169:241–50.CrossRef
26.
Zurück zum Zitat Petersen CCH, Malenka RC, Nicoll RA, Hopfield JJ. All-or none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci U S A. 1998;95:4732–7.CrossRef Petersen CCH, Malenka RC, Nicoll RA, Hopfield JJ. All-or none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci U S A. 1998;95:4732–7.CrossRef
27.
Zurück zum Zitat Poirazzi P, Brannon T, Mel BW. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 2003a;37:977–87.CrossRef Poirazzi P, Brannon T, Mel BW. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 2003a;37:977–87.CrossRef
28.
Zurück zum Zitat Poirazzi P, Brannon T, Mel BW. Pyramidal neuron as a 2-layer neural network. Neuron. 2003b;37:989–99.CrossRef Poirazzi P, Brannon T, Mel BW. Pyramidal neuron as a 2-layer neural network. Neuron. 2003b;37:989–99.CrossRef
29.
Zurück zum Zitat Santhakumar V, Aradi I, Soltetz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cells types and axonal topography. J Neurophysiol. 2005;93:437–53.CrossRef Santhakumar V, Aradi I, Soltetz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cells types and axonal topography. J Neurophysiol. 2005;93:437–53.CrossRef
30.
Zurück zum Zitat Saraga F, Wu CP, Zhang L, Skinner FK. Active dendrites and spike propagation in multicompartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol. 2003;552:673–89.CrossRef Saraga F, Wu CP, Zhang L, Skinner FK. Active dendrites and spike propagation in multicompartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol. 2003;552:673–89.CrossRef
31.
Zurück zum Zitat Saraga F, Balena T, Wolansky T, Dickson CT, Woodin MA. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus. Neuroscience. 2008;155(1):64–75.CrossRef Saraga F, Balena T, Wolansky T, Dickson CT, Woodin MA. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus. Neuroscience. 2008;155(1):64–75.CrossRef
32.
Zurück zum Zitat Sommer FT, Wennekers T. Modelling studies on the computational function of fast temporal structure in cortical circuit activity. J Physiol Paris. 2000;94:473–88.CrossRef Sommer FT, Wennekers T. Modelling studies on the computational function of fast temporal structure in cortical circuit activity. J Physiol Paris. 2000;94:473–88.CrossRef
33.
Zurück zum Zitat Sommer FT, Wennekers T. Associative memory in networks of spiking neurons. Neural Netw. 2001;14:825–34.CrossRef Sommer FT, Wennekers T. Associative memory in networks of spiking neurons. Neural Netw. 2001;14:825–34.CrossRef
34.
Zurück zum Zitat Somogyi P, Katona L, Klausberger T, Lasztóczi B, Viney TJ. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1635):20120518.CrossRef Somogyi P, Katona L, Klausberger T, Lasztóczi B, Viney TJ. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1635):20120518.CrossRef
35.
Zurück zum Zitat Steinbuch K. Non-digital learning matrices as preceptors. Kybernetik. 1961;1:117–24.CrossRef Steinbuch K. Non-digital learning matrices as preceptors. Kybernetik. 1961;1:117–24.CrossRef
36.
Zurück zum Zitat Treves A, Rolls E. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2:189–200.CrossRef Treves A, Rolls E. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2:189–200.CrossRef
37.
Zurück zum Zitat Willshaw D, Buneman O, Longuet-Higgins H. Non-holographic associative memory. Nature. 1969;222:960–2.CrossRef Willshaw D, Buneman O, Longuet-Higgins H. Non-holographic associative memory. Nature. 1969;222:960–2.CrossRef
38.
Zurück zum Zitat Zarnadze S, Bäuerle P, Santos-Torres J, Böhm C, Schmitz D, Geiger JR, et al. Cell-specific synaptic plasticity induced by network oscillations. Elife. 2016;5:e14912.CrossRef Zarnadze S, Bäuerle P, Santos-Torres J, Böhm C, Schmitz D, Geiger JR, et al. Cell-specific synaptic plasticity induced by network oscillations. Elife. 2016;5:e14912.CrossRef
39.
Zurück zum Zitat Zhang S, Huang K, Hussain A. Learning from few samples with memory network. Cogn Comput. 2018;10(1):15–22.CrossRef Zhang S, Huang K, Hussain A. Learning from few samples with memory network. Cogn Comput. 2018;10(1):15–22.CrossRef
Metadaten
Titel
Improving the Recall Performance of a Brain Mimetic Microcircuit Model
verfasst von
Vassilis Cutsuridis
Publikationsdatum
13.06.2019
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09658-8

Weitere Artikel der Ausgabe 5/2019

Cognitive Computation 5/2019 Zur Ausgabe