Skip to main content
Log in

Experimental and numerical investigation on thermal fluid–structure interaction on ceramic plates in high enthalpy flow

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

A detailed knowledge of the fluid–structure interaction in hypersonic flows is important for the design of future space transportation systems. The thermal aspect of such an interaction was investigated with the help of a generic model in the arc-heated wind tunnel L3K at the German Aerospace Center in Cologne. Flat and curved panels of the fibre-reinforced ceramics C/C-SiC with and without anti-oxidation coating where used. Several configurations with and without back plane insulation were tested at \(10^\circ\) and \(20^\circ\) angle of attack. The panel heating was measured with an infrared camera, several thermocouples and pyrometers. The experimental results show the influence of the shape as well as of radiation cooling and radiation heating. The experiments also reveal the effect of additional heating due to recombination of atomic oxygen on the surface. At certain configurations a local temperature peak moved over the panel. This thermal wave is also influenced by the silicon carbide coating. The analysis is supported by coupled fluid and structure simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

DLR:

German Aerospace Center

L3K:

Arc-heated wind tunnel 3 at DLR in Cologne

TPS:

Thermal protection system

AoA:

Angle of attack

w/o:

Without

\(c_\mathrm{f}\) :

Skin friction coefficient

\(\mathrm{Ma}_\infty\) :

Mach number in the free stream

\(v_\infty\) :

Flow velocity in the free stream

\(T_\infty\) :

Static temperature in the free stream

\(p_\infty\) :

Static pressure in the free stream

x :

X-coordinate (origin at test panel’s leading edge)

y :

Y-coordinate (origin in symmetry plane)

z :

Z-coordinate

References

  1. Barcena, J., Jimenez, C., Esser, B., Gülhan, A., Kuhn, M., Petkov, I., Hannemann, V., Okan, A., Ontac, S., Merrifield, J., Gianella, S., Gaia, D., Liedtke, V., Francesconi, D., Portaluppi, M., Santella, D., Ortona, A., Barbato, M., Tanno, H.: Innovative thermal management concepts for sharp leading edges of hypersonic vehicles. In: Materials Science and Technology 2014. Pittsburgh (2014)

  2. Breede, F., Frieß, M.: Development and characterisation of C/C-SiC manufactured by LSI method and effective fibre preform techniques for rocket nozzle extensions. In: Adams, N.A., Radespiel, R., Sattelmayer, T., Schröder, W., Weigand, B. (eds.) SFB/TRR40 Annual Report 2011, pp. 279–289. Lehrstuhl für Aerodynamik, TUM, Garching bei München (2011)

    Google Scholar 

  3. Deutschmann, O., Riedel, U.,, Warnatz, J.: Modelling of surface reactions in hypersonic re-entry flow fields. In: 2nd European Symposium on Aerothermodynamics for Space Vehicles, ESA SP-367, Noordwijk. European Space Agency (1995)

  4. Esser, B., Gülhan, A.: Thermal fluid–structure interaction in different atmospheres. In: 5th European Workshop on Thermal Protection Systems and Hot Structures. ESA, Noordwijk (2006)

  5. Frühauf, H.-H., Infed, F., Fertig, M., Olawsky, F.: Thermal loads for the experimental vehicle X-38. In: 4th European Symposium Aerothermodynamics for Space Applications, ESA SP-487, Capua. European Space Agency (2002)

  6. Gerhold, T.: Overview of the hybrid RANS code TAU. Notes Numer. Fluid Mech. Multidiscip. Des. 89, 81–92 (2002)

    Article  Google Scholar 

  7. Gülhan, A.: Application of pyrometry and IR-thermography to high surface temperature measurements. In: Measurement Techniques for High Enthalpy and Plasma Flows. Rhode-Saint-Genèse. RTO AVT Course (1999)

  8. Gülhan, A., Esser, B.: Arc-heated facilities as a tool to study aerothermodynamic problems of reentry vehicles. In: Lu, F.K., Marren, D.E. (eds.) Advanced Hypersonic Test Facilities. Progress in Astronautics and Aeronautics, vol. 198, chapter 13, pp. 375–403. American Institute of Aeronautics and Astronautics, Reston (2002)

  9. Haupt, M.C., Niesner, R., Unger, R., Horst, P.: Computational aero-structural coupling for hypersonic applications. In: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA 2006–3252. American Institute of Aeronautics and Astronautics, San Francisco (2006)

  10. Hirschel, E.H., Weiland, C.: Design of hypersonic flight vehicles: some lessons from the past and future challenges. CEAS Space J. 1(1–4), 3–22 (2010). doi:10.1007/s12567-010-0004-4

    Google Scholar 

  11. Mack, A., Schäfer, R., Gülhan, A., Esser, B.: Flowfield topology changes due to fluid–structure interaction in aypersonic flow using ANSYS and TAU. In: Breitsamter, C., Laschka, B., Heinemann, H.-J., Hilbig, R. (eds.) New Results in Numerical and Experimental Fluid Mechanics IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 87, pp. 196–203. Springer, Berlin (2004)

  12. Palmer, G.E., Henline, W.D., Olynick, D.R., Milos, F.S.: High-fidelity thermal protection system sizing of reusable launch vehicle. J. Spacecr. Rocket. 34(5), 577–583 (1997)

    Article  Google Scholar 

  13. Panerai, F., Chazot, O., Helber, B., Sakraker, I.: Aerothermochemistry testing of a ceramic matrix composite TPS for a lifting reentry vehicle. In: 4th European Conference for Aerospace Sciences (EUCASS), Saint Petersburg. EUCASS association (2011)

  14. Pidan, S., Auweter-Kurtz, M., Fertig, M., Herdrich, G., Laux, T., Trabandt, U.: Catalytic behaviour of candidate thermal protection materials. In: 5th European Symposium on Aerothermodynamics for Space Vehicles, ESA SP-563. Cologne (2005)

  15. Schäfer, R.: Thermisch-mechanisches Verhalten heißer Strukturen in der Wechselwirkung mit einem umströmenden Fluid. Technical report, Deutsches Zentrum für Luft- und Raumfahrt e. V., Köln (2005)

  16. Schäfer, R., Mack, A., Esser, B., Gülhan, A.: Fluid-structure interaction on a generic model of a reentry vehicle nosecap. In: 5th Congress on Thermal Stresses and related topics, Blacksburg. Virginia. Virginia Polytechnic Institute and State University (2003)

  17. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. In: Wesseling, P., Onate, E., Périaux, J. (eds.) European Conference on Computational Fluid Dynamics, ECCOMAS CFD, pp. 5–8. Citeseer, Delft (2006)

  18. Stewart, D.A.: Determination of surface catalytic efficiency for thermal protection materials—room temperature to their upper use limit. In: 31st Thermophysics Conference (1996a)

  19. Stewart, D.A.: Surface catalytic efficiency of advanced carbon carbon candidate thermal protection materials for SSTO vehicles. Technical report, Ames Research Center, Moffett Field, California (1996b)

  20. Stewart, D.A., Rakich, J.V., Lanfranco, M.J.: Catalytic surface effects experiment on the Space Shuttle. In: 16th Thermophysics Conference. American Institute of Aeronautics and Astronautics, Palo Alto (1981)

  21. Wenbo, M., Fei, H., Liang, Z., Xiaoli, C.: Surface recombination effects on surface Friction of reentry vehicles. Procedia Eng. 99, 607–612 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft—DFG) within the Transregional Collaborative Research Centre 40 (Sonderforschungsbereich Transregio 40). Many thanks go to Fabian Breede and Martin Frieß for the fabrication of the ceramic panels for the experiments. The help and advice of the technical staff of the Supersonic and Hypersonic Technology Department in Cologne is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Willems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willems, S., Esser, B. & Gülhan, A. Experimental and numerical investigation on thermal fluid–structure interaction on ceramic plates in high enthalpy flow. CEAS Space J 7, 483–497 (2015). https://doi.org/10.1007/s12567-015-0101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0101-5

Keywords

Navigation