Skip to main content
Log in

Experimental results on unsteady shock-wave/boundary-layer interaction induced by an impinging shock

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Experiments on shock-wave/boundary-layer interaction of an impinging shock on a flat panel at Mach numbers of 3 and 4 were conducted in the trisonic wind tunnel (TMK) of the Supersonic and Hypersonic Technologies Department at DLR, Cologne. To obtain high-frequency data, the model was equipped with 12 high-speed pressure transducers for measurements at 100 kHz and high-speed schlieren photography was used. The experimental setup is designed for quick rotation of the shock generator allowing testing at different ramp angles during one wind tunnel run. The static pressure distribution and high-speed pressure fluctuations in the interaction area were analysed with regard to the spatial and temporal distribution of occurring frequencies. At the beginning of the separation and near the reattachment, a strong increase of low-frequency fluctuations of up to 1 kHz was observed. In the separation area, higher frequencies were also excited. These results were compared to the frequencies and flow topology found in the high-speed schlieren videos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Délery, J., Dussauge, J.-P.: Some physical aspects of shock wave, boundary layer interactions. Shock Wave 19, 453–468 (2009). doi:10.1007/s00193-009-0220-z ISSN 09381287

  2. Dolling, D.S.: Years, fifty, of shock-wave, boundary-layer interaction research: what next? AIAA J 39(8), 1517–1531 (2001). doi:10.2514/2.1476 ISSN 0001–1452 URL http://arc.aiaa.org/doi/abs/10.2514/2.1476

  3. Östlund, J., Damgaard, T., Frey, M.: Phenomena, side-load,in highly overexpanded rocket nozzles. J Propul Power 20(4), 695–704 (2004). doi:10.2514/1.3059 ISSN 0748–4658 URL http://arc.aiaa.org/doi/abs/10.2514/1.3059

  4. Pozefsky, P.: Identifying sonic fatigue prone structures on a hypersonic transatmospheric vehicle (ATV). In: AIAA 12th Aeroacoustics Conference, San Antonio, TX, AIAA (1989)

  5. Dolling, D.S.: Fluctuating loads in shock wave/turbulent boundary layer interaction: tutorial and update. In: 31st Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA (1993) doi:10.2514/6.1993-284

  6. Erengil, M.E., Dolling, D.S.: Correlation of separation shock motion with pressure fluctuations inthe incoming boundary layer. AIAA J 29(11), 1868–1877 (1991). doi:10.2514/3.10812 ISSN 0001–1452

  7. Beresh, S.J., Clemens, N.T., Dolling, D.S., Fluctuations, relationship between upstream turbulent boundary-layer velocity, unsteadiness, separation shock. J A.I.A.A. 40(12), 2412–2422 (2002). doi:10.2514/2.1609 ISSN 0001–1452 URL http://arc.aiaa.org/doi/abs/10.2514/2.1609

  8. Dupont, P., Haddad, C., Debiève, J.-F.: Space and time organization in a shock-induced separated boundary layer. J Fluid Mech 559, 255 (2006). doi:10.1017/S0022112006000267 ISSN 0022–1120

  9. Bookey, P., Wyckham, C., Alexander, S.: Investigations, experimental, of mach 3 shock-wave turbulent boundary layer interactions. In: 35th AIAA Fluid Dynamics Conference and Exhibit, number June, pp. 1–15 (2005). doi:10.2514/6.2005-4899 ISBN 978-1-62410-059-8 URL http://arc.aiaa.org/doi/abs/10.2514/6.2005-4899

  10. Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J Fluid Mech 585, 369 (2007). doi:10.1017/S0022112007006799 ISSN 0022–1120

  11. Humble, R.A., Scarano, F., van Oudheusen, B.W.: Unsteady aspects of an incident shock wave, turbulent boundary layer interaction. J Fluid Mech 635, 47 (2009). doi:10.1017/S0022112009007630 ISSN 0022–1120

  12. Dussauge, J.-P., Dupont, P., Debiève J.-F.: Unsteadiness in shock wave boundary layer interactions with separation (2006) ISSN 12709638. URL http://linkinghub.elsevier.com/retrieve/pii/S1270963805001495

  13. Pirozzoli, S., Grasso, F.: Direct numerical simulation of impinging shock wave, turbulent boundary layer interaction at M=2.25. Physics Fluids, 18(6), 065113 (2006). doi:10.1063/1.2216989. ISSN 10706631 URL http://scitation.aip.org/content/aip/journal/pof2/18/6/10.1063/1.2216989

  14. Ringuette, M.J., Minwei, W., Martín, P.M.: Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J Fluid Mech 594, 59–69 (2008). doi:10.1017/S0022112007009020 ISSN 0022–1120

  15. Touber, E., Sandham, N.D.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor Comput Fluid Dynam 23, 79–107 (2009a). doi:10.1007/s00162-009-0103-z ISSN 09354964

  16. Grilli, M., Chen, L.S., Hickel, S., Adams, N., Willems, S., Gülhan A.: Experimental and numerical investigation on shockwave/turbulent boundary layer interaction. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, pp 1–15, (2012). URL http://arc.aiaa.org/doi/pdf/10.2514/6.2012-2701

  17. Grilli, M., Hickel, S., Adams. N.: Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. Int J Heat Fluid Flow 42, 79–93 (2013). doi:10.1016/j.ijheatfluidflow.2012.12.006. ISSN 0142727X URL http://linkinghub.elsevier.com/retrieve/pii/S0142727X13000052

  18. Touber, E., Sandham, N.D.: Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19, 469–478 (2009b). doi:10.1007/s00193-009-0222-x ISSN 09381287

  19. Touber, E., Sandham, N.D.: Low-order stochastic modelling of low-frequency motions in reflected shock-wave, boundary-layer interactions. J Fluid Mech 671, 417–465 (2011). doi:10.1017/S0022112010005811. ISSN 0022–1120 URL http://eprints.soton.ac.uk/178515/

  20. Pasquariello, V., Grilli, M., Hickel, S., Nikolaus A.: Large-eddy simulation of passive shock-wave/boundary-layer interaction control. Int J Heat Fluid Flow 49, 116–127 (2014). doi:10.1016/j.ijheatfluidflow.2014.04.005 ISSN 0142727X URL http://linkinghub.elsevier.com/retrieve/pii/S0142727X14000460

  21. Esch, H.: Die 0,6-m X 0,6-m-Trisonische Meßstrecke (TMK) der DFVLR in Köln-Porz (Stand, : Technical Report 86–21. DLR, Köln (1986)

  22. Hirschel, E.H.: Basics of aerothermodynamics. Springer-Verlag Berlin Heidelberg, New York (2005)

    Google Scholar 

  23. Canny, J., Approach, A.: Computational,to edge detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 8(6), 679–698 (1986). doi:10.1109/TPAMI.1986.4767851 ISSN 0162–8828 URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4767851

  24. Estruch, D., Lawson, N.J., MacManus, D.G., Garry, K.P., Stollery, J.L., Measurement of shock wave unsteadiness using a high-speed schlieren system and digital image processing. Rev Scientific Instrum 79(12), 126108 (2008). doi:10.1063/1.3053361 ISSN 1089–7623 URL http://www.ncbi.nlm.nih.gov/pubmed/19123599

  25. Pressure Systems. System 8400 User Manual-3.0 Version. Pressure Systems, Hampton, Va (1991)

  26. R. Schodl.: Entwicklung des Laser-Zwei-Fokus-Verfahrens für die berührungslose Messung der Strömungsvektoren, insbesondere in Turbomaschinen. PhD thesis, RWTH Aachen, (1977)

  27. Boutier, A., Fertin, G., Lefevre, J.: Laser velocimeter for wind tunnel measurements. In: IEEE Transactions on Aerospace and Electronic Systems, AES 14(3), 441–455 (1978)

  28. Willems, S., Gülhan, A., Esser, B.: Shock induced fluid structure interaction on a flexible wall in supersonic turbulent flow. In: Progress in Flight Physics, vol. 5, pp. 285–308, (2013). doi:10.1051/eucass/201305

  29. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. Invited lecture in proceedings on CD of the European conference on computational fluid dynamics ECCOMAS CDF 2006, 1–25 (2006)

    Google Scholar 

  30. Reda, D.C., Murphy, J.D.: Wave, shock, interactions, turbulent boundary-layer in rectangular channels. AIAA J 11(2), 139–140 (1973). doi:10.2514/3.50445. ISSN 0001–1452 URL http://arc.aiaa.org/doi/abs/10.2514/3.50445

  31. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. In: IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73 (1967). doi:10.1109/TAU.1967.1161901 ISSN 0018–9278

  32. Selig, M.S., Andreopoulos, J., Muck, K.C., Dussauge, J.-P., Smits, A.J.: Turbulence structure in a shock wave, turbulent boundary-layer interaction. AIAA J 27(7), 862–869 (1989). doi:10.2514/3.10193. ISSN 0001–1452 URL http://arc.aiaa.org/doi/abs/10.2514/3.10193

  33. Ringuette, M.J., Bookey, P., Wyckham, C., Smits, A.J.: Experimental study of a mach 3 compression ramp interaction at retheta = 2400. AIAA J 47(2), 373–385 (2009). doi:10.2514/1.38248. ISSN 0001–1452 URL http://arc.aiaa.org/doi/abs/10.2514/1.38248

  34. Wu, M., Martin, M.P.: Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J 45(4), 879–889 (2007). doi:10.2514/1.27021 ISSN 0001–1452

Download references

Acknowledgments

This project is financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the Collaborative Research Center Transregio 40 (Sonderforschungsbereich Transregio 40). We gratefully acknowledge the help and advice of the technical staff of the Supersonic and Hypersonic Technologies Department in Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Daub.

Additional information

This paper is based on a presentation at the 8th European Symposium on Aerothermodynamics for Space Vehicles, 2–6 March 2015, Lisbon, Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daub, D., Willems, S. & Gülhan, A. Experimental results on unsteady shock-wave/boundary-layer interaction induced by an impinging shock. CEAS Space J 8, 3–12 (2016). https://doi.org/10.1007/s12567-015-0102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0102-4

Keywords

Navigation