Skip to main content

Advertisement

Log in

Bt crops and food security in developing countries: realised benefits, sustainable use and lowering barriers to adoption

  • Review
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt crops) have been cultivated commercially for over 15 years. Worldwide, Bt crops have provided effective control of target pests with fewer applications of insecticide, have increased yield and profitability for farmers, and have reduced risk to the environment and human health compared with non-Bt crops. Sustainable use of Bt crops requires risk management to limit the evolution of pest resistance and adverse effects of the Bt proteins to non-target organisms. Risks are managed by national regulatory authorities; however, the establishment of functional regulatory systems with the necessary scientific capacity is problematic in many developing countries, which hinders the wider deployment of Bt and other transgenic insect-resistant crops. Timely introduction of these crops may also be obstructed by inefficient implementation of international regulatory regimes, such as the Cartagena Protocol on Biosafety (CPB). Regulatory costs limit the number of insect-resistant crops that may be developed, and delay in the introduction of such crops may result in large opportunity costs. Implementing effective risk management while limiting these costs requires clear policy that defines the benefits and harms of cultivating transgenic crops and how those benefits and harms should be weighed in decision-making. Policy should lead to the development of regulatory frameworks that minimise the number of new data requirements and maximise the value of existing studies for risk assessment; costs will thereby be reduced, increasing the prospects for Bt crops, and transgenic insect-resistant crops generally, to improve food security in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A similar rationale is used for assessing the risks to human and animal health from consumption of products derived from Bt crops. A full description is outside the scope of the paper and readers are referred to Kuiper et al. (2001) for a review of this subject

References

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    CAS  PubMed  Google Scholar 

  • Avisar D, Eilenberg H, Keller M, Reznik N, Segal M, Sneh B, Zilberstein Z (2009) The Bacillus thuringiensis delta-endotoxin Cry1C as a potential bioinsecticide in plants. Plant Sci 176:315–324

    Article  CAS  Google Scholar 

  • Bates SL, Zhao J-Z, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  CAS  PubMed  Google Scholar 

  • Bayer J, Norton G, Falck-Zepeda J (2010) Cost of compliance with biotechnology regulation in the Philippines: implications for developing countries. AgBioForum 13:53–62

    Google Scholar 

  • Beegle CC, Yamamoto T (1992) History of Bacillus thuringiensis Berliner research and development. Can Entomol 124:587–616

    Article  Google Scholar 

  • Bennett R, Kambhampati U, Morse S, Ismael Y (2006) Farm-level economic performance of genetically modified cotton in Maharashtra, India. Appl Econ Perspect Pol 28:59–71

    Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    Article  CAS  PubMed  Google Scholar 

  • Blanco CA, Storer NP, Abel CA, Jackson R, Leonard R, Lopez JD, Payne G, Siegfried BD, Spencer T, Terán-Vargas AP (2008) Baseline susceptibility of tobacco budworm (Lepidoptera: Noctuidae) to Cry1F toxin from Bacillus thuringiensis. J Econ Entomol 101:168–173

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Brookes G (2008) The impact of using GM insect resistant maize in Europe since 1998. Int J Biotechnol 10:148–166

    Article  Google Scholar 

  • Brookes G, Barfoot P (2005) GM crops: the global economic and environmental impact — the first nine years 1996–2004. AgBioForum 8:187–196

    Google Scholar 

  • Brookes G, Barfoot P (2007) Global impact of biotech crops: socio-economic and environmental effects in the first ten years of commercial use. AgBioForum 9:139–151

    Google Scholar 

  • Brookes G, Barfoot P (2008) Global impact of biotech crops: socio-economic and environmental effects 1996–2006. AgBioForum 11:21–38

    Google Scholar 

  • Brookes G, Barfoot P (2010) Global impact of biotech crops: environmental effects, 1996–2008. AgBioForum 13:76–94

    Google Scholar 

  • Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Whitlow M, Dennehy TJ, Tabashnik BE (2003) Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc Natl Acad Sci USA 100:1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Carpenter J (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo M, Yafuso C, Schmidt C, Huang C, Rahman M, Olson C, Ellers-Kirk C, Orr B, Marsh S, Antilla L, Dutilleul P, Carrière Y (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA 103:7571–7576

    Article  CAS  PubMed  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  CAS  PubMed  Google Scholar 

  • De Maagd RA, Bosch Stiekema W (1999) Bacillus thuringiensis-mediated insect resistance in plants. Trends Plant Sci 4:9–13

    Article  PubMed  Google Scholar 

  • De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • de la Campa R, Hooker D, Miller J, Schaafsma A, Hammond B (2005) Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 159:539–552

    Article  PubMed  Google Scholar 

  • Demont M, Tollens E (1998) First impact of biotechnology in the EU: Bt maize adoption in Spain. Ann Appl Biol 145:197–207

    Article  Google Scholar 

  • Duan JJ, Lundgren JG, Naranjo S, Marvier M (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett 6:74–77

    Article  PubMed  Google Scholar 

  • Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY (2008) A meta-analysis of effects of bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3(1):e1415. doi:10.1371/journal.pone.0001415

    Article  PubMed  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insect. Proc Natl Acad Sci USA 93:5389–5394

    Article  CAS  PubMed  Google Scholar 

  • Firbank LG, Dewar AM, Hill MO, May MJ, Perry JN, Rothery P, Squire GR, Woiwod IP (1999) Farm-scale evaluations of GM crops explained. Nature 399:727–728

    Article  CAS  Google Scholar 

  • Flexner JL, Lighthart B, Croft BA (1986) The effects of microbial pesticides on non-target, beneficial arthropods. Agric Ecosyst Environ 16:203–254

    Article  Google Scholar 

  • Folcher L, Delos M, Marengue E, Jarry M, Weissenberger A, Eychenne N, Regnault-Roger C (2010) Lower mycotoxin levels in Bt maize grain. Agron Sustainable Dev. doi:10.1051/agro/2010005

    Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Hammond B, Campbell K, Pilcher C, Degooyer T, Robinson A, McMillen B, Spangler S, Riordan S, Rice L, Richard J (2004) Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. J Agric Food Chem 52:1390–1397

    Article  CAS  PubMed  Google Scholar 

  • Haq Z (2010) Bt cotton flunks pest resistance test. Hindustan Times 5th March, 2010. Available at http://www.hindustantimes.com/Bt-cotton-flunks-pest-resistance-test-in-Gujarat/H1-Article1-515648.aspx, accessed 28th April, 2010

  • Hofs J-L, Fok M, Vaissayre M (2006) Impact of Bt cotton adoption on pesticide use by smallholders: a 2-year survey in Makhatini Flats (South Africa). Crop Prot 24:984–988

    Article  CAS  Google Scholar 

  • Hossain F, Pray C, Lu Y, Huang J, Fan C, Hu R (2004) Genetically modified cotton and farmers’ health in China. Int J Occup Environ Health 10:296–303

    CAS  PubMed  Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Hu R, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–690

    Article  CAS  PubMed  Google Scholar 

  • Huesing J, English L (2004) The impact of Bt crops on the developing world. AgBioForum 7:84–95

    Google Scholar 

  • Jaffe G (2004) Regulating transgenic crops: a comparative analysis of different regulatory process. Transgenic Res 13:5–19

    Article  CAS  PubMed  Google Scholar 

  • James C (2009) Global Status of Commercialized Biotech/GM Crops: 2009. ISAAA Brief No. 41. ISAAA: Ithaca, NY

  • Janmaat AF, Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond B 270:2263–2270

    Article  Google Scholar 

  • Johnson KL, Hudson RAF, MD PGM (2007a) How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends Plant Sci 12:1–5

    Article  CAS  PubMed  Google Scholar 

  • Johnson SR, Strom S, Grillo K (2007b) Quantification of the impacts on us agriculture of biotechnology-derived crops planted in 2006. National Center for Food and Agricultural Policy. Accessed at http://www.ncfap.org/documents/2007biotech_report/Quantification_of_the_Impacts_on_US_Agriculture_of_Biotechnology.pdf, accessed 18th May, 2010

  • Kalaitzandonakes N, Alston J, Bradford K (2006) Compliance Costs for Regulatory Approval of New Biotech Crops. In: Just R, Alston J, Silberman D (eds) Regulating agricultural biotechnology: economics and policy. Springer, New York, pp. 37–57

  • Kalaitzandonakes N, Alston J, Bradford K (2007) Compliance costs for regulatory approval of new biotech crops. Nat Biotechnol 25:509–511

    Article  CAS  PubMed  Google Scholar 

  • Karembu M, Nguthi F, Ismail H (2009) Biotech crops in Africa: the final frontier. ISAAA AfriCenter, Nairobi

    Google Scholar 

  • Kruger M, Van Rensburg JBJ, Van den Berg J (2009) Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot 28:684–689

    Article  Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HPMJ, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528

    Article  CAS  PubMed  Google Scholar 

  • Kurtz RW, McCaffery A, O’Reilly D (2007) Insect resistance management for Syngenta’s VipCot™ transgenic cotton. J Invertebr Pathol 95:227–230

    Article  PubMed  Google Scholar 

  • Lee MK, Miles P, Chen J-S (2006) Brush border membrane binding properties of Bacllus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midgets. Biochem Biophys Res Commun 339:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xu Z, Chang J, Chen J, Meng F, Zhu YC, Shen J (2008) resistance allele frequency to Bt cotton in field populations of Helicoverpa armingera (Lepidoptera: Noctuidae) in China. J Econ Entomol 101:933–943

    Article  CAS  PubMed  Google Scholar 

  • Lu YH, Qiu F, Feng HQ, Li HB, Yang ZC, Wyckhuys KAG, Wu KM (2008) Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China. Crop Prot 27:465–472

    Article  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KAG, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science (in press)

  • McGaughey WH, Gould F, Gelernter W (1998) Bt resistance management. Nat Biotechnol 16:144–146

    Article  CAS  PubMed  Google Scholar 

  • McGaughey WH, Whalon ME (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • McHughen A (2007) Fatal flaws in agbiotech regulatory policies. Nat Biotechnol 25:725–727

    Article  CAS  PubMed  Google Scholar 

  • MacIntosh SC (2010) Managing the risk of insect resistance to transgenic insect control traits: practical approaches in local environments. Pest Manage Sci 65:100–106

    Article  CAS  Google Scholar 

  • Malone LA, Gatehouse AMR, Barratt BIP (2008) Beyond Bt: alternative strategies for insect-resistant genetically modified crops. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp. 357–417

  • Manalo A, Ramon G (2007) The cost of product development of Bt Corn Event MON810 in the Philippines. AgBioForum 10:19–32

    Google Scholar 

  • Martin T, Ochou GO, Djihinto A, Traore D, Togola M, Vassal JM, Vaissayre M, Fournier D (2002) Controlling an insecticide-resistant bollworm in West Africa. Agric Ecosyst Environ 107:409–411

    Article  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on non-target invertebrates. Science 316:1475–1477

    Article  CAS  PubMed  Google Scholar 

  • Matten SR, Head, GP, Quemada HD (2008) How governmental regulation can help of hinder the integration of Bt crops with IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp. 27–39

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Metcalf RL (1980) Changing roles of insecticides in crop protection. Annu Rev Entomol 25:219–256

    Article  CAS  Google Scholar 

  • Moar W, Roush R, Shelton A, Ferré J, MacIntosh S, Leonard BR, Abel C (2008) Field-evolved resistance to Bt toxins. Nat Biotechnol 26:1072–1074

    Article  CAS  PubMed  Google Scholar 

  • Munkvold G, Hellmich R, Rice L (1999) Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis 83:130–138

    Article  Google Scholar 

  • Naranjo S (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Reviews: Perspect Agric Vet Sci Nutrit Nat Resour 4:1–23

    Google Scholar 

  • National Research Council (2002) Environmental effects of transgenic plants: the scope and adequacy of regulation. The National Academy Press, Washington

    Google Scholar 

  • National Research Council (2010) The impact of genetically engineered crops on farm sustainability in the United States. The National Academies Press, Washington

    Google Scholar 

  • Nauen R, Bretschneider T (2002) New modes of action of insecticides. Pestic Outlook 13:241–245

    Article  CAS  Google Scholar 

  • Navon A (2000) Bacillus thuringiensis insecticides in crop protection — reality and prospects. Crop Prot 19:669–676

    Article  Google Scholar 

  • Newsom LD (1967) Consequences of insecticide use on nontarget organisms. Ann Rev Entomol 12:257–286

    Article  CAS  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ostry V, Ovesna J, Skarkova J, Pouchova V, Ruprich J (2010) A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotoxin Res. doi:10.1007/s12550-010-0056-5

    Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard® cotton in the USA — early promises vesus today’s reality. Plant J 27:489–501

    Article  CAS  PubMed  Google Scholar 

  • Pray C, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China — the benefits continue. Plant J 31:423–430

    Article  CAS  PubMed  Google Scholar 

  • Pray C, Bengali P, Ramaswami B (2005) The cost of biosafety regulations: the Indian experience. QJ Int Agr 44:267–289

    Google Scholar 

  • Pray C, Ramaswami B, Huang J, Hu R, Bengali P, Zhang H (2006) Costs and enforcement of biosafety regulations in India and China. International Journal of Technology and Globalisation 2:137–157

    Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Ann Rev Resour Econ 2009:665–693

    Article  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  CAS  PubMed  Google Scholar 

  • Qaim M, Subramanian A, Naik G, Zilberman D (2006) Adoption of Bt cotton and impact variability: insights from India. Appl Econ Perspect Pol 28:48–58

    Google Scholar 

  • Raney T (2006) economic impact of transgenic crops in developing countries. Curr Opin Biotechnol 17:1–5

    Article  CAS  Google Scholar 

  • Raybould A (2007) Ecological versus ecotoxicological methods for assessing the environmental risks of transgenic crops. Plant Sci 173:589–602

    Article  CAS  Google Scholar 

  • Raybould A, Stacey D, Vlachos D, Graser G, Li X, Joseph R (2007) Non-target organism risk assessment of MIR604 maize expressing mCry3A for control of corn rootworm. J Appl Entomol 131:391–399

    Article  CAS  Google Scholar 

  • Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Lawo NC, Raybould A (2009) Making effective use of existing data for case-by-case risk assessments of genetically engineered crops. J Appl Entomol 133:571–583

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Roush RT (1997) Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pestic Sci 51:328–334

    Article  CAS  Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Sagoff M (2005) Do non-native species threaten the natural environment. J Agric Environ Ethics 18:215–236

    Article  Google Scholar 

  • Sanvido O, Romeis J, Bigler F (2007) Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation. Adv Biochem Eng Biotechnol 107:235–278

    CAS  PubMed  Google Scholar 

  • Shankar B, Thirtle C (2005) Pesticide productivity and transgenic cotton technology: the South African smallholder case. J Agric Econ 56:97–116

    Article  Google Scholar 

  • Storer NP, Dively GP, Herman RA (2008) Landscape effects of insect-resistant genetically modified crops. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, pp. 273–302

  • Subramanian A, Qaim M (2009) Village-wide effects of agricultural biotechnology: the case of Bt cotton in India. World Dev 37:256–267

    Article  Google Scholar 

  • Subramanian A, Qaim M (2010) The impact of Bt cotton on poor households in rural India. J Dev Stud 46:295–311

    Article  Google Scholar 

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83:1671–1676

    Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  CAS  PubMed  Google Scholar 

  • Tende RM, Mugo SN, Nderitu JH, Olubayo FM, Songa JM, Bergvinson DJ (2010) Evaluation of Chilo partellus and Busseola fusca susceptibility to δ-endotoxins in Bt maize. Crop Prot 29:115–120

    Article  CAS  Google Scholar 

  • Thacker JRM (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge

  • Van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

  • Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  PubMed  CAS  Google Scholar 

  • Van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24:147–151

    Google Scholar 

  • Wainhouse D (2005) Ecological methods in forest pest management. Oxford University Press, Oxford

  • Walters FS, de Fontes CM, Hart H, Warren GW, Chen JS (2010) Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76:3082–3088

    Article  CAS  PubMed  Google Scholar 

  • Williams W, Windham G, Buckley P, Daves C (2002) Aflatoxin accumulation in conventional and transgenic corn hybrids infested with southwestern corn borer (Lepidoptera: Crambidae). Journal Agric Urban Entomol 19:227–236

    Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS ONE 3(5):e2118. doi:10.1371/journal.pone.0002118

    Article  PubMed  CAS  Google Scholar 

  • Wu F (2007) Bt corn and impact on mycotoxins. CAB Reviews: Perspect Agric Vet Sci Nutrit Nat Resour 2:1–8

    Google Scholar 

  • Wu K, Li W, Feng H, Guo Y (2002) Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Prot 21:997–1002

    Article  Google Scholar 

  • Wu KM, Lu YH, Feng H, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–1678

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Guo Y (2003) Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii Glover, in northern China. Environ Entomol 32:312–318

    Article  Google Scholar 

  • Yorobe J, Quicoy C (2006) Economic impact of Bt corn in the Philippines. Philipp Agric Scientist 89:258–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Raybould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raybould, A., Quemada, H. Bt crops and food security in developing countries: realised benefits, sustainable use and lowering barriers to adoption. Food Sec. 2, 247–259 (2010). https://doi.org/10.1007/s12571-010-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-010-0066-3

Keywords

Navigation