Skip to main content
Log in

The foundations of a unified approach to mathematical modelling of angiogenesis

  • Original Paper
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

It is well known that avascular tumours only grow to a limited size before metabolic demands are impeded due to the diffusion limit of oxygen and other nutrients. For continued growth the tumour switches to an angiogenic phenotype that induces sprouting of new blood vessels from the surrounding medium. Sprouting angiogenesis is the most widely studied aspect of neovascular growth and has been modelled from several mathematical points of view. In this paper we propose a new underlying theme, which unifies a number of the existing techniques employed to model angiogenesis. The basic formulation is in terms of stochastic differential equations. The ideas discussed have wide application, particularly in the validation of models of vessel cooption, vasculogenic mimicry and lymphangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson A.R.A., Sleeman B.D., Young I.M., Griffiths B.S. and Robertson W., Nematode movement along a gradient in a structurally heterogeneous environment II: Theory, Fundamental and Applied Nematology, 20, 165–172 (1997)

    Google Scholar 

  2. Burri P.H., Hlushchuk R. and Djonov V.G., Intussusceptive angiogenesis: Its emergence, its characteristics and its significance, Development Dynamics, 231, 474–488 (2004)

    Article  Google Scholar 

  3. Chaplain M.A.J. and Anderson A.R.A.,Modelling the growth and form of capillary networks, In: On growth and form, (Eds.) Chaplain M.A.J., Singh G.D. and McLachlan J.C., Wiley: New York, 225–249 (1999)

    Google Scholar 

  4. Chaplain M.A.J. and Stuart A.M., A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10, 149–168 (1993)

    Article  MATH  Google Scholar 

  5. Carmeliet P. and Jain R., Angiogenesis in Cancer and other Diseases, Nature, 407, 249–257 (2000)

    Article  Google Scholar 

  6. Ferrara N., Gerber H.P. and LeCouter J., The Biology of VEGF and its Receptors, Nat. Med., 9, 669–676 (2003)

    Article  Google Scholar 

  7. Folberg R. and Maniotis A.J., Vasculogenic mimicry, APMIS, 112, 508–525 (2004)

    Article  Google Scholar 

  8. Folkman J., Role of Angiogenesis in Tumour Growth and Metastasis, Semin. Oncol., 29, 15–18 (2002)

    Google Scholar 

  9. Folkman J., Angiogenesis, Annu. Rev. Med., 57, 1–18 (2006)

    Article  Google Scholar 

  10. Fukumura D. and Jain D., Imaging angiogenesis and the microenvironment, APMIS, 116, 695–715 (2008)

    Article  Google Scholar 

  11. Gardiner C.W., Handbook of Stochastic Methods, Springer-Verlag (1983)

  12. Harper S.J. and Bates D.O., VEGF-A splicing: the key to antiangiogenic therapeutics? Nat. Rev. Cancer, 8, 880–887 (2008)

    Article  Google Scholar 

  13. Heissig B., Hattori K., Dias S., Friedrich M., Ferris B., Hackett N.R., et al., Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche requires MMP-9 mediated release of Kit-ligand, Cell, 109 625–637 (2002)

    Article  Google Scholar 

  14. Hill N.A. and Häder D.P., A Biased Random Walk Model for the Trajectories of Swimming Micro-organisms, J. Theor. Biol., 186, 503–526, (1997)

    Article  Google Scholar 

  15. Hillen F. and Griffioen A.W., Tumour vascularization: Sprouting angiogenesis and beyond, Cancer Metastasis Rev., 26, 489–502, (2007)

    Article  Google Scholar 

  16. Holash J., Maisonpierre P.C., Compton D., Boland P., Alexander C.R, Zagzag D., et al., Vessel Cooption, Regression and Growth in Tumors mediated by Angiopoietins and VEGF, Science, 284, 1994–1998, (1999)

    Article  Google Scholar 

  17. Levine H.A. and Sleeman B.D., A System of Reaction Diffusion Equations arising in the Theory of Reinforced Random Walks, SIAM J. Appl. Math., 57, 683–730, (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Levine H.A., Sleeman B.D. and Nilsen-Hamilton M., Mathematical Modelling of the onset of Capillary formation initiating Angiogenesis, J. Math. Biol., 42, 195–238, (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levine H.A., Pamuk S., Sleeman B.D. and Nilsen-Hamilton M., A Mathematical Model of Capillary Formation and Development in Tumour Angiogenesis: Penetration into the Stroma, Bull. Math. Biol., 63, 801–863, (2001)

    Article  Google Scholar 

  20. Mil’shtein G.N., Approximate integration of stochastic differential equations, Theory Prob. Appl., 19, 557–562, (1974)

    Google Scholar 

  21. Patan S., Vasculogenesis and Angiogenesis, Cancer. Teat. Res., 117, 3–32, (2004)

    Google Scholar 

  22. Pepper M.S. and Skobe M., Lymphatic endothelium: Morphological, molecular and functional properties, Journal of Cell Biology, 163, 209–213, (2003)

    Article  Google Scholar 

  23. Plank M.J. and Sleeman B.D., A Reinforced Random Walk Model of Tumour Angiogenesis and Anti-Angiogenic Strategies, IMA J. Math. Med. Biol., 20, 135–181, (2003)

    Article  MATH  Google Scholar 

  24. Plank M.J. and Sleeman B.D., Lattice and Non-Lattice Models of Tumour Angiogenesis, Bull. Math. Biol., 66, 1785–1819, (2003)

    Article  MathSciNet  Google Scholar 

  25. Risau W., Mechanisms of Angiogenesis, Nature, 386, 671–674, (1997)

    Article  Google Scholar 

  26. Othmer H.G. and Stevens A., Aggregation, Blow-up and Collapse: The ABC’s of Taxis and Reinforced Random Walks, SIAM J. Appl. Math., 57, 1044–1081, (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sleeman B.D. and Wallis I.P., Tumour Induced Angiogenesis as a Reinforced Random Walk: Modelling Capillary Network Formation without Endothelial Cell Proliferation, J. Math. Comp. Modelling, 36, 339–358, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stokes C.L. and Lauffenberger D.A., Analysis of the Roles of Microvessel Endothelial Cell Random Motility and Chemotaxis in Angiogenesis, J. Theor. Biol., 152, 377–403, (1991)

    Article  Google Scholar 

  29. Stokes C.L., Lauffenberger D.A. and Williams S.K., Migration of Individual Microvessel Endothelial Cells: Stochastic Model and Parameter Measurement, J. Cell. Sci., 99, 419–430, (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Hubbard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbard, M., Jones, P.F. & Sleeman, B.D. The foundations of a unified approach to mathematical modelling of angiogenesis. Int J Adv Eng Sci Appl Math 1, 43–52 (2009). https://doi.org/10.1007/s12572-009-0004-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-009-0004-9

Keywords

Navigation