Skip to main content
Log in

The physics underlying Gutenberg-Richter in the earth and in the moon

  • Special Issue on Geohtermal Energy
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The linear Gutenberg-Richter relationship is well-established. In any region of the Earth, the logarithm of the number of earthquakes, greater than any magnitude, is proportional to magnitude. This means that the underlying physics is non-linear and not purely elastic. This nonlinear physics has not been resolved. Here we suggest that a new understanding of fluid-rock deformation provides the physics underlying Gutenberg-Richter: where the fluid-saturated microcracks in almost all in situ rocks are so closely-spaced that they verge on failure and fracture, and hence are critical-systems which impose fundamentally-new properties on conventional sub-critical geophysics. The observation of linear Gutenberg-Richter relationship in moonquakes suggests that residual fluids exist at depth in the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Angerer, E., Crampin, S., Li, X. Y., et al., 2002. Processing, Modelling, and Predicting Time-Lapse Effects of Overpressured Fluid-Injection in a Fractured Reservoir. Geophysical Journal International, 149: 267–280

    Article  Google Scholar 

  • Bak, P., 1996. How Nature Works: The Science of Self-Organized Criticality. Springer-Verlag, New York

    Book  Google Scholar 

  • Bak, P., Tang, C., 1989. Earthquakes as a Self-Organized Critical Phenomenon. Journal of Geophysical Research, 94: 15635–15637

    Article  Google Scholar 

  • Chen, C., Rundle, J. B., Li, H. C., et al., 2006. Critical Point Theory of Earthquakes: Observations of Correlated and Cooperative Behavior on Earthquake Fault Systems. Geophysical Research Letters, 33: L18302. doi:10.1029/2006GL027323

    Article  Google Scholar 

  • Crampin, S., 1993. A Review of the Effects of Crack Geometry on Wave Propagation through Aligned Cracks. Canadian Journal of Exploration Geophysics, 29: 3–17

    Google Scholar 

  • Crampin, S., 1994. The Fracture Criticality of Crustal Rocks. Geophysical Journal International, 118: 428–438

    Article  Google Scholar 

  • Crampin, S., 1999. Calculable Fluid-Rock Interactions. Journal of the Geological Society, 156: 501–514

    Article  Google Scholar 

  • Crampin, S., 2003. Aligned Cracks not LPO as the Cause of Mantle Anisotropy. EGS-AGU-EUG Joint Assembly, Nice 2003. Geophysical Research Abstracts, 5: 00205

    Google Scholar 

  • Crampin, S., 2006. The New Geophysics: A New Understanding of Fluid-Rock Deformation. In: Van Cotthem, A., Charlier, R., Thimus, J. F., et al., eds., Multiphysics Coupling and Long Term Behaviour in Rock Mechanics. Taylor and Francis, London. 539–544

    Chapter  Google Scholar 

  • Crampin, S., 2012. Misunderstandings in Comments and Replies about the ICEF Report. www.geos.ed.ac.uk/homes/scrampin/opinion

    Google Scholar 

  • Crampin, S., Gao, Y., 2012. Plate-Wide Deformation before the Sumatra-Andaman Earthquake. Journal of Asian Earth Science, 46: 61–69. doi:10.1016/j.jseaes.2011.1015

    Article  Google Scholar 

  • Crampin, S., Gao, Y., 2013. The New Geophysics. Terra Nova, 25: 173–180. doi:10.1111/ter.12030

    Article  Google Scholar 

  • Crampin, S., Kirkwood, S. C., 1981. Velocity Variations in Systems of Anisotropic Symmetry. J. Geophys., 49: 35–42

    Google Scholar 

  • Crampin, S., Peacock, S., 2005. A Review of Shear-Wave Splitting in the Compliant Crack-Critical Anisotropic Earth. Wave Motion, 41: 59–77

    Article  Google Scholar 

  • Crampin, S., Peacock, S., 2008. A Review of the Current Understanding of Shear-Wave Splitting and Common Fallacies in Interpretation. Wave Motion, 45: 675–722

    Article  Google Scholar 

  • Crampin, S., Zatsepin, S. V., 1997. Modelling the Compliance of Crustal Rock: II—Response to Temporal Changes before Earthquakes. Geophysical Journal International, 129: 495–506

    Article  Google Scholar 

  • Crampin, S., Volti, T., Stefánsson, R., 1999. A Successfully Stress-Forecast Earthquake. Geophysical Journal International, 138: F1–F5

    Article  Google Scholar 

  • Crampin, S., Volti, T., Chastin, S., et al., 2002. Indication of High Pore-Fluid Pressures in a Seismically-Active Fault Zone. Geophysical Journal International, 151: F1–F5

    Article  Google Scholar 

  • Crampin, S., Volti, T., Stefánsson, R., 2004a. Response to “A Statistical Evaluation of a ‘Stress-Forecast’ Erthquake” by Seher, T., Main, I. G.. Geophysical Journal International, 157: 194–199

    Article  Google Scholar 

  • Crampin, S., Peacock, S., Gao, Y., et al., 2004b, The Scatter of Time-Delays in Shear-Wave Splitting above Small Earthquakes. Geophysical Journal International, 156: 39–44

    Article  Google Scholar 

  • Crampin, S., Gao, Y., Peacock, S., 2008. Stress-Forecasting (not Predicting) Earthquakes: A Paradigm Shift? Geology, 36: 427–430

    Article  Google Scholar 

  • Crampin, S., Gao, Y., De Santis, A., 2013. A Few Earthquake Conundrums Resolved. Journal of Asian Earth Science, 62: 501–509. doi:10.1016/j.jseaes.1012.10.036.

    Article  Google Scholar 

  • Davies, P., 1989. The New Physics: A Synthesis. In: Davies, P., ed., The New Physics. Cambridge University Press, London. 1–6

    Google Scholar 

  • Duennebier, F., Sutton, G. H., 1974. Thermal Moonquakes. Journal of Geophysical Research, 79: 4351–4363

    Article  Google Scholar 

  • Duennebier, F., Dorman, J., Lammlein, D., et al., 1975. Meteoroid Flux from Passive Seismic Experimental Data. Proceedings, Lunar Science Conference, 6: 2417–2426

    Google Scholar 

  • Frolich, C., Nakamura, Y., 2006. Possible Extra-Solar-System Cause for Certain Lunar Seismic Events. Icarus, 185: 21–28

    Article  Google Scholar 

  • Gao, Y., Crampin, S., 2004. Observations of Stress Relaxation before Earthquakes. Geophysical Journal International, 157: 578–582

    Article  Google Scholar 

  • Gao, Y., Crampin, S., 2008. Shear-Wave Splitting and Earthquake Forecasting. Terra Nova, 20: 440–448

    Article  Google Scholar 

  • Geller, R. J., 1997. Earthquake Prediction: A Critical Review. Geophysical Journal International, 131: 425–450

    Article  Google Scholar 

  • Geller, R. J., Jackson, D. D., Kagan, Y. Y., et al., 1997. Earthquakes cannot be Predicted. Science, 275: 1616–1623

    Article  Google Scholar 

  • Gutenberg, B., Richter, C. F., 1956. Magnitude and Energy of Earthquakes. Annali di Geofisica, 9: 1–15

    Google Scholar 

  • Hauri, E. H., Saal, A. E., Rutherford, M. J., et al., 2014. Volatile Content of Lunar Volcanic Glasses and the Volatile Depletion of the Moon. Proceedings of 45th Lunar and Planetary Science Conference, Abstract #2628

    Google Scholar 

  • Lammlein, D. R., Latham, G. V., Dorman, J., et al., 1974. Lunar Seismicity, Structure, and Tectonics. Reviews of Geophysics and Space Physics, 12: 1–21

    Article  Google Scholar 

  • Li, S., Milliken, R. E., 2014. Quantitative Mapping of Hydration in Lunar Pyroclaswtic Deposits: Insights into Water from the Lunar Interior. Proceedings of 45th Lunar and Planetary Science Conference, Abstract #2012

    Google Scholar 

  • Lorenz, E. N., 1972. Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas? Proceedings of 139th Annual Meeting. American Association of Advances in Science, Washington D.C.

    Google Scholar 

  • Main, I. G., Peacock, S., Meredith, P. G., 1990. Scattering Attenuation and the Fractal Geometry of Fracture Systems. Pure and Applied Geophysics, 133: 283–304

    Article  Google Scholar 

  • Nakamura, Y., 1980. Shallow Moonquakes: How They Compare with Earthquakes. Proceedings, Lunar Science Conference, 11: 1847–1853

    Google Scholar 

  • Nakamura, Y., 2003. New Identification of Deep Moonquakes in the Apollo Lunar Seismic Data. Physics of the Earth and Planetary Interiors, 139: 197–205

    Article  Google Scholar 

  • Nakamura, Y., 2005. Farside Deep Moonquakes and Deep Interior of the Moon. Journal of Geophysical Research, 110: E01001. doi:10.1029/2004JE002332

    Google Scholar 

  • Nakamura, Y., Latham, G. V., Dorman, H. J., 1982. Apollo Lunar Seismic Experiment-Final Summary. Journal of Geophysical Research, 87: A117–A123

    Article  Google Scholar 

  • Oberst, J., 1987. Unusually High Stress Drops Associated with Shallow Moonquakes. Journal of Geophysical Research, 92: 1397–1405

    Article  Google Scholar 

  • Oberst, J., Nakamura, Y., 1991. A Search for Clustering among the Meteoroid Impacts Detected by the Apollo Lunar Seismic Network. Icarus, 91: 315–325

    Article  Google Scholar 

  • Richter, C. F., 1958. Elementary Seismology. W. H. Freeman and Co., San Francisco

    Google Scholar 

  • Robinson, K. L., Barnes, J. J., Tartèse, R., et al., 2014. Primitive Lunar Water in Evolved Rocks? Proceedings of 45th Lunar and Planetary Science Conference, Abstract #1607

    Google Scholar 

  • Rundle, J. B., Turcotte, D. L., Shcherbakov, R., et al., 2003. Statistical Physics Approach to Understanding the Multiscale Dynamics of Earthquake Fault Systems. Reviews of Geophysics, 41(4): 1–30. doi:10.1029/2003RG000135

    Article  Google Scholar 

  • Saal, A. E., Hauri, E. H., Casio, M. L., et al., 2008. Volatile Content of Lunar Volcanic Glasses and the Presence of Water in the Moon’s Interior. Nature, 454: 192–195

    Article  Google Scholar 

  • Savage, M. K., 1999. Seismic Anisotropy and Mantle Deformation: What Have We Learned from Shear Wave Splitting? Reviews of Geophysics, 37: 65–106

    Article  Google Scholar 

  • Tartèse, R., Barnes, J. J., Anand, M., et al., 2014. Water Content and Hydrocarbon Isotropic Composition of Apatite in KREEP and High-Al Mare Basalts: New Perspectives of Water in the Moon. Proceedings of 45th Lunar and Planetary Science Conference, Abstract #1999

    Google Scholar 

  • Turcotte, D. L., 1992. Fractal and Chaos in Geology and Geophysics. Cambridge University Press, London

    Google Scholar 

  • Volti, T., Crampin, S., 2003. A Four-Year Study of Shear-Wave Splitting in Iceland: 2. Temporal Changes before Earthquakes and Volcanic Eruptions. In: Nieuwland, D. A., ed., New Insights into Structural Interpretation and Modelling. Geological Society, London, Special Publication, 212: 135–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Crampin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crampin, S., Gao, Y. The physics underlying Gutenberg-Richter in the earth and in the moon. J. Earth Sci. 26, 134–139 (2015). https://doi.org/10.1007/s12583-015-0513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0513-3

Key Words

Navigation