Skip to main content
Log in

Chemical and isotopic response to intensive groundwater abstraction and its implications on aquifer sustainability in Shijiazhuang, China

  • Hydrogeology and Geo-hazards
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The stress imposed on groundwater resources due to intensively exploited aquifer has resulted in groundwater depletion in the North China Plain (NCP). Management of groundwater resources needs to understand the changes or dynamic responses due to the exploitation. The response of groundwater systems to intensive exploitation and groundwater availability were assessed by the combined use of conventional hydrochemical data and environmental isotopes in Shijiazhuang, NCP. The generally increased concentration of total dissolved solids (TDS), major cation and anion of groundwater in the past 40 years indicated high vulnerability of aquifer system but a short turn over time by intensive groundwater exploitation, which also was proved by changes of groundwater renewal rate estimated by tritium. The vertical distribution of tritium in aquifers showed that the active groundwater recharge zone has been extended from the depth of 100 to ~150 m since 1985, indicating an enhancement of active groundwater flushing of local groundwater system due to intensive groundwater abstraction. The enrichment trend of δ18O and δ2H value with groundwater abstraction, suggested the impacts of local recharge from irrigation return. The increase concentrations of nitrate with time indicated high aquifer vulnerability. A comprehensive effort should be developed for effective management strategies that ensure long-term, stable, and flexible water supplies to meet water demands in the NCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bicalho, C. C., Batiot-Guilhe, C., Seidel, J. L., et al., 2012. Hydrodynamical Changes and Their Consequences on Groundwater Hydrochemistry Induced by Three Decades of Intense Exploitation in a Mediterranean Karst System. Environmental Earth Sciences, 65(8): 2311–2319. doi:10.1007/s12665-011-1384-2

    Article  Google Scholar 

  • Bruce, D. L., Yechieli, Y., Zilberbrand, M., et al., 2007. Delineation of the Coastal Aquifer of Israel Based on Repetitive Analysis of 14C and Tritium. Journal of Hydrology, 343(1): 56–70. doi:10.1007/s12665-011-1384-2

    Article  Google Scholar 

  • Chen, W. H., 1999. Ground Water in Hebei. Seismological Press, Beijing. 539 (in Chinese)

    Google Scholar 

  • Chen, Z. Y., Chen, J. S., Fei, Y. H., et al., 2006. Estimation of Groundwater Renewal Rate by Tritium in the Piedmont Plain of the Taihang Mountains. Nuclear Techniques, 29(6): 426–431 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, Z. Y., Nie, Z. L., Zhang, Z. J., et al., 2005. Isotopes and Sustainability of Ground Water Resources, North China Plain. Groundwater, 43(4): 485–493. doi:10.1111/j.1745-6584.2005.0038.x

    Article  Google Scholar 

  • Chen, Z. Y., Qi, J. X., Xu, J. M., et al., 2003. Paleoclimatic Interpretation of the Past 30 Ka from Isotopic Studies of the Deep Confined Aquifer of the North China Plain. Applied Geochemistry, 18(7): 997–1009. doi:10.1016/s0883-2927(02)00206-8

    Article  Google Scholar 

  • Cheng, R. N., 1988. Groundwater Replenishment Analysis through Isotope Composition of Water in the Nature. In: Liu, C. M., Ren, H., eds., Air, Surface, Soil and Ground Water Interaction. Science Press, Beijing. 275–286 (in Chinese)

    Google Scholar 

  • Clark, I. D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. CRC Press, Florida. 352

    Google Scholar 

  • Currell, M. J., Cartwright, I., Bradley, D. C., et al., 2010. Recharge History and Controls on Groundwater Quality in the Yuncheng Basin, North China. Journal of Hydrology, 385(1–4): 216–229. doi:10.1016/j.jhydrol.2010.02.022

    Article  Google Scholar 

  • Deng, Y. M., Wang, Y. X., Li, H. J., et al., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science–Journal of China University of Geosciences, 40(11): 1876–1886 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Doney, S. C., Glover, D. M., Jenkins, W. J., 1992. A Model Function of the Global Bomb Tritium Distribution in Precipitation, 1960–1986. Journal of Geophysical Research, 97(C4): 5481–5492. doi:10.1029/92jc00015

    Article  Google Scholar 

  • El-Naqa, A., Al-Momani, M., Kilani, S., et al., 2007. Groundwater Deterioration of Shallow Groundwater Aquifers due to Overexploitation in Northeast Jordan. CLEAN–Soil, Air, Water, 35(2): 156–166. doi:10.1002/clen.200700012

    Article  Google Scholar 

  • Fritz, S. J., Drimmie, R. J., Fritz, P., 1991. Characterizing Shallow Aquifers Using Tritium and 14C: Periodic Sampling Based on Tritium Half-Life. Applied Geochemistry, 6(1): 17–33. doi:10.1016/0883-2927(91)90060-3

    Article  Google Scholar 

  • Guendouz, A., Moulla, A. S., Edmunds, W. M., et al., 2003. Hydrogeochemical and Isotopic Evolution of Water in the Complexe Terminal Aquifer in the Algerian Sahara. Hydrogeology Journal, 11(4): 483–495. doi:10.1007/s10040-003-0263-7

    Article  Google Scholar 

  • Hu, Y. K., Moiwo, J. P., Yang, Y. H., et al., 2010. Agricultural Water-Saving and Sustainable Groundwater Management in Shijiazhuang Irrigation District, North China Plain. Journal of Hydrology, 393(3–4): 219–232. doi:10.1016/j.jhydrol.2010.08.017

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency), 2006. Isotopic Assessment of Long Term Groundwater Exploitation. International Atomic Energy Agency, Vienna. 286

  • IAEA/WMO, 2012. Water Isotope System for Data Analysis, Visualization and Electronic Retrieval. The GNIP Database. [2017-04-01]. http://www.univie.ac.at/cartography/project/wiser/

  • Kamel, S., Dassi, L., Zouari, K., et al., 2005. Geochemical and Isotopic Investigation of the Aquifer System in the Djerid-Nefzaoua Basin, Southern Tunisia. Environmental Geology, 49(1): 159–170. doi:10.1007/s00254-005-0076-1

    Article  Google Scholar 

  • Kendy, E., Zhang, Y. Q., Liu, C. M., et al., 2004. Groundwater Recharge from Irrigated Cropland in the North China Plain: Case Study of Luancheng County, Hebei Province, 1949–2000. Hydrological Processes, 18(12): 2289–2302. doi:10.1002/hyp.5529

    Article  Google Scholar 

  • Kreuzer, A. M., von Rohden, C. V., Friedrich, R., et al., 2009. A Record of Temperature and Monsoon Intensity over the Past 40 kyr from Groundwater in the North China Plain. Chemical Geology, 259(3/4): 168–180. doi:10.1016/j.chemgeo.2008.11.001

    Article  Google Scholar 

  • Lang, X. J., Lin, W. J., Liu, Z. M., et al., 2016. Hydrochemical Characteristics of Geothermal Water in Guide Basin. Earth Science–Journal of China University of Geosciences, 41(10): 1723–1734 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Le Gal La Salle, C., Marlin, C., Leduc, C., et al., 2001. Renewal Rate Estimation of Groundwater Based on Radioactive Tracers (3H, 14C) in an Unconfined Aquifer in a Semi-Arid Area, Iullemeden Basin, Niger. Journal of Hydrology, 254(1): 145–156. doi:10.1016/s0022-1694(01)00491-7

    Article  Google Scholar 

  • Liang, X., Liu, Y., Jin, M. G., et al., 2010. Direct Observation of Complex Tóthian Groundwater Flow Systems in the Laboratory. Hydrological Processes, 24(24): 3568–3573. doi:10.1002/hyp.7758

    Article  Google Scholar 

  • Lin, X. Y., Jiao, Y., 1987. Scientific Management of Groundwater Resources in Shijiazhuang. Xinhua Press, Changchun. 220 (in Chinese)

    Google Scholar 

  • Liu, J., Chen, Z. Y., Wei, W., et al., 2014. Using Chlorofluorocarbons (CFCs) and Tritium (3H) to Estimate Groundwater Age and Flow Velocity in Hohhot Basin, China. Hydrological Processes, 28(3): 1372–1382. doi:10.1002/hyp.9659

    Article  Google Scholar 

  • Liu, J., Zheng, C. M., Zheng, L., et al., 2008. Ground Water Sustainability: Methodology and Application to the North China Plain. Groundwater, 46(6): 897–909. doi:10.1111/j.1745-6584.2008.00486.x

    Google Scholar 

  • Long, X., Sun, Z. Y., Zhou, A. G., et al., 2015. Hydrogeochemical and Isotopic Evidence for Flow Paths of Karst Waters Collected in the Heshang Cave, Central China. Journal of Earth Science, 26(1): 149–156. doi:10.1007/s12583-015-0522-2

    Article  Google Scholar 

  • Madioune, D. H., Faye, S., Orban, P., et al., 2014. Application of Isotopic Tracers as a Tool for Understanding Hydrodynamic Behavior of the Highly Exploited Diass Aquifer System (Senegal). Journal of Hydrology, 511(7): 443–459. doi:10.1016/j.jhydrol.2014.01.037

    Article  Google Scholar 

  • Meng, S. H., Liu, J., Zhang, Z. J., et al., 2015. Spatiotemporal Evolution Characteristics Study on the Precipitation Infiltration Recharge over the Past 50 Years in the North China Plain. Journal of Earth Science, 26(3): 416–424. doi:10.1007/s12583-014-0494-7

    Article  Google Scholar 

  • Shi, X. F., Dong, W. H., Li, M. Z., et al., 2012. Evaluation of Groundwater Renewability in the Henan Plains, China. Geochemical Journal, 46(2): 107–115. doi:10.2343/geochemj.1.0154

    Article  Google Scholar 

  • Shu, Y. Q., Villholth, K. G., Jensen, K. H., et al., 2012. Integrated Hydrological Modeling of the North China Plain: Options for Sustainable Groundwater Use in the Alluvial Plain of Mt. Taihang. Journal of Hydrology, 464/465: 79–93. doi:10.1016/j.jhydrol.2012.06.048

    Article  Google Scholar 

  • Su, X. S., Xu, W., Du, S. H., 2014. In Situ Infiltration Test Using a Reclaimed Abandoned River Bed: Managed Aquifer Recharge in Shijiazhuang City, China. Environmental Earth Sciences, 71(12): 5017–5025. doi:10.1007/s12665-013-2893-y

    Article  Google Scholar 

  • Trabelsi, R., Kacem, A., Zouari, K., et al., 2009. Quantifying Regional Groundwater Flow between Continental Intercalaire and Djeffara Aquifers in Southern Tunisia Using Isotope Methods. Environmental Geology, 58(1): 171–183. doi:10.1007/s00254-008-1503-x

    Article  Google Scholar 

  • von Rohden, C., Kreuzer, A., Chen, Z. Y., et al., 2010. Characterizing the Recharge Regime of the Strongly Exploited Aquifers of the North China Plain by Environmental Tracers. Water Resources Research, 46: 1–14. doi:10.1029/2008wr007660

    Google Scholar 

  • Wan, J. W., Liu, C. F., Chao, N. Y., et al., 2003. Principle and Application of Isotope Hydrology. China University of Geosciences Press, Wuhan. 431 (in Chinese)

    Google Scholar 

  • Wang, J. Z., Zhang, G. H., Mu, H. D., et al., 2010. The Shallow Groundwater Recharging Characteristics Responding to Human Activities. Acta Geoscientica Sinica, 31(4): 557–562 (in Chinese with English Abstract)

    Google Scholar 

  • Yu, K. N., Hao, A. B., Li, D., et al., 2001. Distribution of Groundwater Salt Pollution and the Polluting Mechanism in Shijiazhuang. Earth Science Frontiers, 8(1): 151–154 (in Chinese with English Abstract)

    Google Scholar 

  • Zha, Y. Y., Shi, L. S, Ye, M., et al., 2013. A Generalized Ross Method for Two- and Three-Dimensional Variably Saturated Flow. Advances in Water Resources, 54: 67–77. doi:10.1016/j.advwatres.2013.01.002

    Article  Google Scholar 

  • Zhan, Y. H., Guo, H. M., Wang. Y., et al., 2014. Evolution of Groundwater Major Components in the Hebei Plain: Evidences from 30-Year Monitoring Data. Journal of Earth Science, 25(3): 563–574. doi:10.1007/s12583-014-0445-3

    Article  Google Scholar 

  • Zhang, Y. H., Ye, S. J., Wu, J. C., 2011. A Modified Global Model for Predicting the Tritium Distribution in Precipitation, 1960–2005. Hydrological Processes, 25(15): 2379–2392. doi:10.1002/hyp.8001

    Article  Google Scholar 

  • Zhang, Z. G., Zhang, H. P., Sun, J. C. et al., 1987. Environmental Isotope Study Related to Ground Water Age, Flow System and Saline Water Origin in Quaternary Aquifer of Hebei Plain. Hydrogeology and Engineering Geology, 96(4): 1–6

    Google Scholar 

  • Zhang, Z. J., Fei, Y. H., 2009. Atlas of Groundwater Sustainable Utilization in North China Plain. Sinomaps Press, Beijing. 185 (in Chinese)

    Google Scholar 

  • Zhang, Z. J., Fei, Y. H., Chen, Z. Y., et al., 2009. Investigation and Assessment of Sustainable Utilization of Groundwater Resources in the North China Plain. Geological Publishing House, Beijing. 471 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, L., Liu, C. F., Jiang, S., et al., 2001. A Study of 36Cl Age in Quaternary Groundwater of Hebei Plain, China. Science in China Series E: Technological Sciences, 44(S1): 11–15. doi:10.1007/bf02916783

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 41272252 and 41602268) and the coordinated research project of International Atomic Energy Agency (IAEA-CRPF33019, No. 17314). The final publication is available at Springer via http://dx.doi.10.1007/s12583-017-0729-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyu Chen.

Additional information

http://orcid.org/0000-0002-0983-4971

http://orcid.org/0000-0001-7320-0204

Cheng, Z. S., Zhang, Y. B., Su, C., et al., 2017. Chemical and Isotopic Response to Intensive Groundwater Abstraction and Its Implications on Aquifer Sustainability in Shijiazhuang, China. Journal of Earth Science, 28(3): 523-534. doi:10.1007/s12583-017-0729-5. http://en.earth-science.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Zhang, Y., Su, C. et al. Chemical and isotopic response to intensive groundwater abstraction and its implications on aquifer sustainability in Shijiazhuang, China. J. Earth Sci. 28, 523–534 (2017). https://doi.org/10.1007/s12583-017-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0729-5

Key words

Navigation