Skip to main content
Log in

Geological Factors for the Formation of Xi’an Ground Fractures

  • Geo-hazards
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Xi’an ground fractures are the most typical ground fractures in China. Fourteen fractures have nearly divided the historical city into several distinct sections. These fractures are parallel and distributed in NEE direction at the same interval, with all features exhibiting a down dropping southerly block which extends to connect with the underlying fault. The activities of fractures are primarily expressed as normal faults. The faulted strata are well defined and dislocation displacement increases with depth. Thus, fractures have the characteristics of syn-sedimentary faults, which constitute the hanging wall of the Lintong-Chang’an fault branch system. Crustal thinning caused by the uplifting of upper mantle provides a power source for extension and stretching along the fracture surface of the upper crust, which results in a series of extensional faults and the suitable conditions for forming massive ground fractures. The movement of tectonic blocks influences the normal dip-slipping tension of Lintong-Chang’an fault branches, and produces a series of secondary tectonic fractures adjacent to surface, which constitute the prototype of ground fractures. The recent regional tensile stress produced by modern mainland deformation, also profoundly influences the current activity of Xi’an ground fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Altamimi, Z., Collilieux, X., Legrand, J., et al., 2007. ITRF2005: A New Release of the International Terrestrial Reference Frame Based on Time Series of Station Positions and Earth Orientation Parameters. Journal of Geophysical Research, 112(B9): B9401. https://doi.org/10.1029/2007jb004949

    Article  Google Scholar 

  • Burbey, T. J., 2010. Mechanisms for Earth Fissure Formation in Heavily Pumped Basins. Land Subsidence, Associated Hazards and the Role of Natural Resources Development. IAHS-AISH Publication, 339: 3–8

    Google Scholar 

  • Chen, Z. X., Yuan, Z. H., Peng, J. B., 2007. Basin Characteristics about Ground Fractures Development of Weihe Basin. Journal of Engineering Geology, 15: 441–447 (in Chinese with English Abstract)

    Google Scholar 

  • De Filippis, L., Anzalone, E., Billi, A., et al., 2013. The Origin and Growth of a Recently-Active Fissure Ridge Travertine over a Seismic Fault, Tivoli, Italy. Geomorphology, 195: 13–26. https://doi.org/10.1016/j.geomorph.2013.04.019

    Article  Google Scholar 

  • El Baruni, S. S., 1994. Earth Fissures Caused by Groundwater Withdrawal in Sarir South Agricultural Project Area, Libya. Hydrogeology Journal, 2(1): 45–52. https://doi.org/10.1007/s100400050045

    Article  Google Scholar 

  • Feng, X. J., 2000. Gushui Fault Profile on the Weihe Fault. Seismology and Geology, 22(2): 209–230 (in Chinese)

    Google Scholar 

  • Gudmundsson, A., 2011. Rock Fractures in Geological Processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Herring, T. A., 2002. GLOBK: Global Kalman Filter VLBI and GPS Analysis Program, Version 10.0. Massachusetts Institute of Technology. (2002-3-25) [2018-3-20]. http://chandler.mit.edu/~simon/gtgk/GLOBK.pdf

    Google Scholar 

  • Hu, X. L., Tang, H. M., Li, C. D., et al., 2012. Stability of Huangtupo Riverside Slumping Mass II# under Water Level Fluctuation of Three Gorges Reservoir. Journal of Earth Science, 23(3): 326–334. https://doi.org/10.1007/s12583-012-0259-0

    Article  Google Scholar 

  • Jiang, W. L., Xiao, Z. M., Xie, X. S., 2000. Segmentations of Active Normal Dip-Slip Faults around Ordos Block According to Their Surface Ruptures in Historical Strong Earthquakes. Acta Seismologica Sinica, 13(5): 552–562. https://doi.org/10.1007/s11589-000-0055-2

    Article  Google Scholar 

  • King, R. W., Bock, Y., 2000. Documentation for the GAMIT GPS Analysis Software, Release 10.0. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, Scripps Institution of Oceanography University of California at San Diego. [2018-3-20]. http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf

    Google Scholar 

  • Larsen, B., Grunnaleite, I., Gudmundsson, A., 2010. How Fracture Systems Affect Permeability Development in Shallow-Water Carbonate Rocks: An Example from the Gargano Peninsula, Italy. Journal of Structural Geology, 32(9): 1212–1230. https://doi.org/10.1016/j.jsg.2009.05.009

    Article  Google Scholar 

  • Lee, C. F., Zhang, J. M., Zhang, Y. X., 1996. Evolution and Origin of the Ground Fissures in Xi’an, China. Engineering Geology, 43(1): 45–55. https://doi.org/10.1016/0013-7952(95)00088-7

    Article  Google Scholar 

  • Li, P., Zhou, S. Y., Chen, Y. S., et al., 2010. 3D Velocity Structure in Shanxi Graben and Erdos from Two Plane Waves Method. Computerized Tomography Theory and Applications, 19(3): 47–60 (in Chinese)

    Google Scholar 

  • Li, Y. L., Yang, J. C., Hu, X. M., 2000. Origin of Ground Fissures in the Shanxi Graben System, Northern China. Engineering Geology, 55(4): 267–275. https://doi.org/10.1016/s0013-7952(99)00082-4

    Article  Google Scholar 

  • Li, Z. H., Feng, W. P., Xu, Z. H., et al., 2008. The 1998Mw 5.7 Zhangbei-Shangyi (China) Earthquake Revisited: A Buried Thrust Fault Revealed with Interferometric Synthetic Aperture Radar. Geochemistry, Geophysics, Geosystems, 9(4). https://doi.org/10.1029/2007gc001910

    Google Scholar 

  • Liu, C. G., Li, G. R., Wang, D. W., et al., 2016. Middle–Upper Ordovician (Darriwilian–Early Katian) Positive Carbon Isotope Excursions in the Northern Tarim Basin, Northwest China: Implications for Stratigraphic Correlation and Paleoclimate. Journal of Earth Science, 27(2): 317–328. https://doi.org/10.1007/s12583-016-0696-2

    Article  Google Scholar 

  • Lü, Y., Peng, J. B., Wang, G. L., 2014. Characteristics and Genetic Mechanism of the Cuihua Rock Avalanche Triggered by a Paleo-Earthquake in Northwest China. Engineering Geology, 182: 88–96. https://doi.org/10.1016/j.enggeo.2014.08.017

    Article  Google Scholar 

  • Myers, J. R., Gomez, F. G., 2010. Analysis of Subsidence and Ground Fissuring in the Fenwei Basin (Northern China) Using Radar Interferometry. AGU Fall Meeting Abstracts #H23F-1297. December 2010, San Francisco

    Google Scholar 

  • Peng, J. B., Chen, L. W., Huang, Q. B., et al., 2008. Large-Scale Physical Simulative Experiment on Ground-Fissure Expansion Mechanism. Chinese J. Geophys., 6: 1826–1834 (in Chinese with English Abstract)

    Google Scholar 

  • Peng, J. B., Chen, L. W., Huang, Q. B., et al., 2013. Physical Simulation of Ground Fissures Triggered by Underground Fault Activity. Engineering Geology, 155: 19–30. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Peng, J. B., Fan, W., Li, X. A., et al., 2007. Some Key Question in the Formation of Ground Fissures in the Fen-Wei Basin. Journal of Engineering Geology, 15(4): 433–440 (in Chinese with English Abstract)

    Google Scholar 

  • Peng, J. B., Sun, P., Li, X., 2006. Ground Fissure: The Major Geological and Environmental Problem in the Development of Xi’an City, China. Environmental Science and Technology, American Science Press, [S.l.]. 469–474

    Google Scholar 

  • Qu, W., Lu, Z., Zhang, Q., et al., 2014. Kinematic Model of Crustal Deformation of Fenwei Basin, China Based on GPS Observations. Journal of Geodynamics, 75: 1–8. https://doi.org/10.1016/j.jog.2014.01.001

    Article  Google Scholar 

  • Qu, W., Wang, Y. S., Zhang, Q., et al., 2016. Current Crustal Deformation Variation Characteristics of the Fenwei Baisn and Its Surrounding Areas Revealed by GPS Data. Chinese J. Geophys., 59(3): 828–839 (in Chinese with English Abstract)

    Google Scholar 

  • Ren, J., Feng, X. J., Wang, F. Y., 2013. Revealed the Fine Crust Structures of Xi’an Sag in Weihe Basin by Deep Seismic Reflection Profile. Chinese J. Geophys., 56(2): 513–521 (in Chinese with English Abstract)

    Google Scholar 

  • Ren, J., Peng, J. B., Wang, F. X., et al., 2012. The Research of Deep Structural Features of Weihe Basin and Adjacent Areas. Chinese J. Geophys., 55(9): 2939–2947 (in Chinese with English Abstract)

    Google Scholar 

  • Song, Y. G., An, Z. S., 2010. Correlation of Paleoclimatic Records between Chinese Eolian Sediments and Baikal Lacustrine Sediments. Journal of Earth Science, 21(S1): 260–264. https://doi.org/10.1007/s12583-010-0230-x

    Article  Google Scholar 

  • Yang, M. H., Li, L., Zhou, J., et al., 2013. Segmentation and Inversion of the Hangjinqi Fault Zone, the Northern Ordos Basin (North China). Journal of Asian Earth Sciences, 70/71: 64–78. https://doi.org/10.1016/j.jseaes.2013.03.004

    Article  Google Scholar 

  • Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622–627. https://doi.org/10.1007/s12583-016-0712-6

    Article  Google Scholar 

  • Zhang, J. M., 1990. Research on Ground Fracturing in the Region of Xi’an. Northwest University Press, Xi’an (in Chinese)

    Google Scholar 

  • Zhang, Q., Qu, W., Wang, Q. L., et al., 2011. Analysis of Present Tectonic Stress and Regional Ground Fissure Formation Mechanism of the Weihe Basin. Survey Review, 43(322): 382–389. https://doi.org/10.1179/003962611x13055561708740

    Article  Google Scholar 

  • Zhang, S. Q., Wu, L. J., Guo, J. M., 1985. An Interpretation of the DSS Data on Menyuan-Pingliang-Weinan Profile in West China. Chinese J. Geophys., 28(5): 460–472 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Basic Research Project of China (No. 2014CB744703), the National Natural Science Foundation of China (Nos. 41790445, 41731066, 41674001, 41202189, 41274004, 41274005), the Natural Science Basic Research Plan of Shaanxi Province, China (No. 2016JM4005), the Special Fund for Basic Scientific Research of Central Universities (Nos. CHD300102268204, CHD2014G1261050, CHD2014G3263014), and the China Postdoctoral Science Foundation (No. 2013M530412). The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0841-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbing Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Qu, W., Ren, J. et al. Geological Factors for the Formation of Xi’an Ground Fractures. J. Earth Sci. 29, 468–478 (2018). https://doi.org/10.1007/s12583-018-0841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0841-1

Key words

Navigation