Skip to main content
Log in

Petrology and geochemistry of greywackes from Goa-Dharwar sector, western Dharwar Craton: Implications for volcanoclastic origin

  • Published:
Journal of the Geological Society of India

Abstract

Late Archaean Supracrustals of the Goa-Dharwar sector (GDS) are composed of a thick sequence of greywacke sequence with narrow intercalations of quartzite, BIF and carbonates. Mafic volcanics occupy the base of the sequence. The greywackes are predominantly tuffacious containing chlorite-sericite and hornblende. Arkosic variations containing biotite dominate the western part of the sector. Fine-grained variations occur as isolated narrow lenses within other types of greywackes. The conglomeratic greywackes are localized along the western and the eastern margins of the sector. All of the greywackes are all typically immature containing coarser clasts of mostly plagioclase (18–23%) and quartz (32–34%). Lithic fragments of felsic volcanic rocks are common. The matrix is dominated by mafic material. Biotite and amphibole are related to metamorphic recrystallization. Chlorite, sericite, epidote, carbonate and chert are products of the interplay of diagenesis and low-grade metamorphism. Fe-Ti oxide, sphene, apatite and zircon are usual accessories. But for slight enrichment in K2O, the major element chemistry of the GDS greywackes is similar to the chemistry of Late Archaean greywackes. They also compare in respect of V, Co, Hf contents, K2O/Na2O, SiO2/Al2O3, Na2O/Al2O3, Ba/Rb, Th/U, La/Th, Sm/Nd ratios, steep REE patterns with distinct LREE enrichment and HREE depletion. The GDS greywackes however are distinctly enriched in Rb, Ba, Sr, Th, U, Cu, Zr, Ce/Ce* and depleted in Cr, Ni, and Zn. The conglomeritic and biotite bearing verities contain considerable proportions of clasts derived from the basement tonalitic/granitic terrain. The common tuffacious greywackes containing hornblende and biotite-sericite however include only volcanic clasts and bear evidence of derivation from submarine weathering of predominantly felsic volcanics erupted on a large scale to form a magmatic arc in the later stages of geosynclinal deposition. Geochemical data suggest that the GDS greywackes were laid down in progressively changing basin geometry from a passive to active continental margin and island arc setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, D.M. and Bhattacharya, P. (1994) Petrology and geochemistry of greywackes from the Aravalli Supergroup, Rajasthan, India and the tectonic evolution of a sedimentary basin. Precamb. Res., v. 67, pp.11–35

    Article  Google Scholar 

  • Bhaskar Rao, Y.J., Sivaram, T.V., Pantulu, G.V.C., Gopalan, K. and Naqvi, S.M. (1992) Rb-Sr ages of the Late Archaean metavolcanics and granites, Dharwar craton, South India and evidence for Early Proterozoic thermotectonic event(s). Precambrian Res., v.59, pp.145–170

    Article  Google Scholar 

  • Bhatia, M.R. (1985) Rare earth element geochemistry of Australian Palaeozoic greywackes and mud rocks: provenance and tectonic control. Sediment. Geol., v.45, pp.97–113

    Article  Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181–193

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V.N. and Jayaram, S. (1988) Stratigraphy and structure of Late Archaean, Dharwar volcanic and sedimentary rocks and their basement in a part of the Shimoga basin, east of Bhadravathi, Karnataka. Jour. Geol. Soc. India, v.32, pp.1–19

    Google Scholar 

  • Chadwick, B., Vasudev, V.N. and Hegde, G.V. (1997) Dharwar craton, southern India, and its Late Archaean plate tectonic setting: current interpretations and controversies. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.106, pp.249–258

    Google Scholar 

  • Chardon, D., Peucat, C., Jayananda, M., Choukroune, P. and Fanning, C.M. (2002) Archaean granite-greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomeneous contraction during mgmatic juvenile accretion. Tectonics, v.21, 1016, doi:10, 1029/2001TC901032

    Article  Google Scholar 

  • Chardon, D. and Jayananda, M. (2008) Three-dimensional field perspective on deformation, flow and growth of the lower continental crust (Dharwar craton, India). Tectonics, v.27, TC 1014, doi:1029/2007TC002120, 2008

    Article  Google Scholar 

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geol., v.104, pp.1–37

    Article  Google Scholar 

  • Condie, K.C. and Wronkreiz, D.J. (1990) A new look at the Archean-Proterozoic boundary: Sediments and the tectonic setting constraint. In: S.M. Naqvi (Ed.), Precambrian Continental Crust and Its Economic Resources. Elsevier, Amsterdam, pp.61–84

    Chapter  Google Scholar 

  • Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The interpretation of igneous rocks. Allen and Unwin, London, 450p.

    Google Scholar 

  • Da Silva, L.C., Noce, C.M. and Lobato, L.M. (2000) Dacitic volcanism in the course of the Rio Das Velhas (2800–2690 Ma) Orogeny: A Brazilian Archean Analogue (TTD) to the modern adakites. Revista Brasileira de Geociências, v.30(3), pp.384–387.

    Google Scholar 

  • Devaraju, T.C., Kaukonen, R.J., Sudhakara, T.L. and Alapieti, T.T. (2006) Tremolite-olivine-phlogopite-bearing ultramafic enclaves in the Archaean migmatitic gneiss near Naregal, Gadag District, Karnataka. Jour. Geol. Soc. India, v.67, pp.312–316.

    Google Scholar 

  • Devaraju, T.C., Hannu Huhma, Sudhakara, T.L., Kaukonen, R.J. and Alapieti, T.T. (2007) Petrology, geochemistry, model Sm-Nd ages and petrogenesis of the granitoids of the northern block of Western Dharwar Craton. Jour. Geol. Soc. India, v.70, pp.889–911.

    Google Scholar 

  • Devaraju, T.C., Alapieti, T.T., Sudhakara, T.L. and Kaukonen, R.J. (2008) Mafic dyke swarms of volcanic arc, ocean floor and N-MOR basalt affinity with destructive plate margin emplacement features in the northern segment of western Dharwar craton. In: R.K. Srivastava, Ch. Sivaji and V. Chalapathi Rao (Eds.), Indian Dykes. Narosa Publishing House, New Delhi, pp.215–237.

    Google Scholar 

  • Dhoundial, D.P., Paul, D.K., Amitabh Sarkar, Trivedi, J.R., Gopalan, K. and Potts, P.J. (1987) Geochronology and geochemistry of Precambrian granitic rocks of Goa, SW India. Precambrian Res., v.36, pp.287–302.

    Article  Google Scholar 

  • Ernst, W.G. and Jun Liu (1998) Experimental phase-equilibrium study of Al- and Ti- contents of calcic amphibole in MORB — A semiquantitative thermobarometer. Amer. Mineral., v.83, pp.952–969.

    Google Scholar 

  • Fedo, C.M., Erickson, A. and Krostad, E.J. (1996) Geochemistry of shales from the Archaean (∼3.0) Bhuwa greenstone belt, Zimbabwe: implications for provenance and source area weathering. Geochem. Cosmochim. Acta, v.60, pp.1751–1763.

    Article  Google Scholar 

  • Feng, R. and Kerrich, R. (1990) Geochemistry of fine-grained clastic sediments in the Archaean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochim. Cosmochim. Acta, v.54, pp.1061–1081.

    Article  Google Scholar 

  • Feng, R., Kerrich, R. and Mass, R. (1993) Geochemical, oxygen and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontaic subprovince, Canada: evidence for ancient crust and Archaean terrain juxtaposition. Geochim. Cosmochim. Acta, v.57, pp.641–658.

    Article  Google Scholar 

  • Hey, M.H. (1954) A new review of the chlorites. Min. Mag., v.30, 277p.

  • Hofmann, A. (2005) The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precamb. Res., v.143, pp.23–49

    Article  Google Scholar 

  • Hofmann, A., Bolhar., R., Dirks, P.A. and Jelsma, H. A. (2003) The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance source area unroofing and submarine vs. subaerial weathering. Geochim. Cosmochim. Acta, v.67, pp.421–440.

    Article  Google Scholar 

  • Holland, H.D. (1978) The chemistry of the atmosphere and the oceans. Wiley, New York, 351p.

    Google Scholar 

  • Manikyamba, C, Naqvi, S.M., Moen, S., Ganeshwar Rao, Balaram V., Ramesh, S.L. and Reddy, G.L.N. (1997) Geochemical heterogeneities of metagreywackes from the Sandur schist belt: implication for active plate margin processes. Precambrian Res., v.84, pp.117–138.

    Article  Google Scholar 

  • Marston, R.J. (1978) The geochemistry of the Archaean clastic metasediments in relation to crustal evolution, northeastern Yilgarn Block, Western Australia. Precambrian Res., v.6, pp.157–175.

    Article  Google Scholar 

  • McLennan, S.M. (1984) Petrological characteristics of Archaean greywackes, Jour. Sediment. Petrol., v.54, pp.889–898

    Google Scholar 

  • McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev. Mineral., v.21, pp.169–200.

    Google Scholar 

  • McLennan, S.M., Taylor, S.R. and Eriksson, K.A. (1983) Geochemistry of Archaean shales from Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta., v.74, pp.1211–1222.

    Article  Google Scholar 

  • McLennan, S.M., Taylor, S.R., Mcculloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic association. Geochim. Cosmochim Acta, v.54, pp.2015–2050.

    Article  Google Scholar 

  • Naqvi, S.M., Sawkar, R.H., Subbarao, D.V., Govil, P.K. and Gnaneshwar Rao, T. (1988) Geology, geochemistry and tectonic setting of greywackes from Karnataka nucleus, India. Precambrian Res., v.39, pp.193–216.

    Article  Google Scholar 

  • Naqvi, S.M., Uday Raj, B., Subba Rao, D.V., Manikyamba, C., Nirmal Charan, Balaram, V. and Srinivasa Sarma, D. (2002) Geology and geochemistry of arenite — quartzwake from the Late Archaean Sandur schist belt — implication for provenance and accretion processes, Precamb. Res., v.114, pp.177–197

    Article  Google Scholar 

  • Nutman, A. P., Chadwick, B., Krishna Rao. and Vasudev, V. N. (1996) SHRIMP U-Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups, and granites adjacent to the Sandur schist belt, Karnataka. Jour. Geol. Soc. India, v.47, pp.153–164

    Google Scholar 

  • Ojakangas, R.W. (1972) Archaean volcanogenic greywackes of the Vermillion district, northeastern Minnesota. Geol. Surv. Amer. Bull., v.83, pp.429–442

    Article  Google Scholar 

  • Ojakangas, R.W. (1985) Review of Archaean clastic sedimentation, Canadian shield: major felsic volcanic contribution to turbidite and alluvial fan — fluvial facies association. In: L.D. Ayres, P.C. Thurston, K.D. Card and W. Weber (Eds.), Evolution of Archaean Supracrustal sequences. Geol. Asso. Canada Spec. Paper 22, pp.23–47.

  • Patil, S.K. and Rao, D.K. (2002) Palaeomagnetic and rock magnetic studies on the dykes of Goa, west coast of Indian Precambrian shield. Phys. Earth Planet. Interiors, v.133, pp.111–125.

    Article  Google Scholar 

  • Pettijohn, S.J., Potter, P.E. and Siever, R. (1973) Sand and Sandstone. Springer-Verlag, New York, 618p.

    Google Scholar 

  • Radhakrishna, B.P. (1967) Reconsideration of some problems in the Archaean complexes of Mysore. Jour. Geol. Soc. India, v.8, pp.102–109.

    Google Scholar 

  • Radhakrishna, B.P. and Vaidyanadhan, R. (1997) Geology of Karnataka (2nd Edition) Geol. Soc. India, Bangalore, 353p.

    Google Scholar 

  • Ramdas, G. and Ramprasad Rao, I.B. (2001) Gravity, magnetic and electrical resitivity studies along the Jadcherla-Panaji subtransect (Extended Abstract). Workshop on Geo-investigations along Jadcherla-Goa sub-transect 27–28 June, Dept. of Geophysics, Osmania University, Hyderabad, pp.4–9.

  • Rosengren, N.M., Cas, R.A.F, Beresford, S.W. and Palich, B.M. (2008) Reconstruction of an extensive Archaean dacitic submarine volcanic complex associated with the komatiitehosted Mt Keith nickel deposit, Agnew-Wiluna Greenstone Belt, Yilgarn Craton, Western Australia. Precambrian Res., v.161, pp.34–52.

    Google Scholar 

  • Slack, J.F. and Stevens, B.P.J. (1994) Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance and metallogenic significance. Geochim. Cosmochim. Acta., v.58, pp.3633–3652.

    Article  Google Scholar 

  • Sugden, T.J., Deb, M. and Windley, B.F. (1990) The tectonic setting of mineralization in the Proterozoic Aravalli Delhi orogenic belt NW India. In: S.M. Naqvi (Ed.), Precambrian Continental Crust and its Eeconomic Resources. Developments in Precambrian Geology 8, Elsevier, Amsterdam, pp.631–652.

    Chapter  Google Scholar 

  • Sun, S. and Mcdonough, W.F. (1989) Chemical and isotope signatures of ocean basalts. In: A. D. Saunders and M. J. Norry (Eds) Magmatism in the Ocean basins. Geol. Soc. London, Spec. Publ.,v. 42, pp.313–345.

  • Swami Nath, J. and Ramakrishnan, M. (1981) Early Precambrian Supracrustal of Southern Karnataka. Mem. Geol. Surv. India, v. 112, 350p.

  • Trendall, A.F., DE Laeter, J.R., Nelson, D.R. and Bhaskar Rao, Y. J. (1997) Further zircon U-Pb age data for the Daginkatte Formation, Dharwar Supergroup, Karnataka Craton. Jour. Geol. Soc. India, v.50, pp.25–30.

    Google Scholar 

  • Taylor, S.R. and Mclennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Geoscience texts, Blackwell, Oxford, 307p.

    Google Scholar 

  • Taylor, P.N., Chadwick, B., Ramakrishnan, M., Moorbath, S.L. and Vishwanatha, M.N. (1984) Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar and acid volcanic rocks and the Chitradurga Granite with special reference to the Late Archaean evolution of the Karnataka Craton, Southern India. Precambrian Res., v.23, pp.349–375.

    Article  Google Scholar 

  • Taylor, P. N., Chadwick, B., Friend, C. R. L., Ramakrishnan, M., Moorbath, S. and Vishwanatha, M. N. (1988) New Age Data on the Geological Evolution of Southern India, Indo-US workshop on the Deep Continental Crust of South India. Jour. Geol. Soc. India, v.31, pp.155–157

    Google Scholar 

  • Toulkeridis, T., Clauer, N., Kroner, A., Reimer, T. and Todt, W. (1999) Characterization, provenance and tectonic setting of Fig Tree greywackes from the Archaean Barberton Greenstone Belt, South Africa. Sediment. Geol., v.124, pp.113–129.

    Google Scholar 

  • Whitney, J.A. and Stormer, J.C. Jr. (1977a) Two-feldspar geothermometry, geobarometry in mesozonal granitic intrusion: Three examples from the Piedmont of Georgia. Contrib. Mineral. Petrol., v.63, pp.51–64.

    Article  Google Scholar 

  • Whitney, J.A. and Stormer, J.C. Jr. (1977b) The distribution of NaAlSi3O8 between coexisting microcline and plagioclase and its effect on geothermometric calculations. Amer. Mineral., v.62, pp.687–691.

    Google Scholar 

  • Widdowson, M., Pringle, M.S. and Fernandez, O.A. (2000) A post K-T boundary (early Palaeocene) age for Deccan-type feeder dykes, Goa, India. Jour. Petrol., v.41, pp.1177–1194.

    Article  Google Scholar 

  • Wimmenauer, W. (1984) Das pravariskische Kristallin im Schwarzwald. Fortschritt der Mineralogie, v.62, pp.69–86.

    Google Scholar 

  • Winchester, J.A. and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differential products, using immobile elements. Chem. Geol., v.20, pp.325–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Devaraju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaraju, T.C., Sudhakara, T.L., Kaukonen, R.J. et al. Petrology and geochemistry of greywackes from Goa-Dharwar sector, western Dharwar Craton: Implications for volcanoclastic origin. J Geol Soc India 75, 465–487 (2010). https://doi.org/10.1007/s12594-010-0050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-010-0050-8

Keywords

Navigation