Skip to main content
Log in

Geochemistry and petrogenesis of radioactive Palaeoproterozoic granitoids of Kinwat crystalline inlier, Nanded and Yeotmal districts, Maharashtra

  • Published:
Journal of the Geological Society of India

Abstract

Kinwat crystalline inlier exposes Palaeoproterozoic granitoids belonging to the northern extensions of younger phase of Peninsular gneissic complex (PGC) within Deccan Trap country in Eastern Dharwar Craton (EDC) and bounded in south by a major NW-SE trending lineament (Kaddam fault). Geochemically, the Kinwat granitoids are similar to high-K, calc-alkaline to shoshonite magnesian granitoids and subdivided into two major groups, i.e. felsic group (pink and grey granites) and intermediate to felsic group (hybrid granitoids). The felsic group (∼67–74% SiO2) shares many features with Neoarchaean to Palaeoproterozoic high potassic granites of PGC such as higher LILE and LREE content and marked depletion in Eu, P and HFSE, especially Nb, Ti, relative to LILE and LREE. The hybrid granitoids (∼58–67% SiO2) have comparatively higher Ca, Mg and Na contents and slightly lower REE content than the granitoids of felsic group. Both, felsic and hybrid granitoids are metaluminous to weakly peraluminous and belong to highly fractionated I-type suite as evidenced by negative correlation of SiO2 with MgO, FeOt, CaO, Na2O, Al2O3, whereas K2O, Rb and Ba show sympathetic relationship with SiO2. Moderate to strong fractionated REE patterns (Ce/YbN: ∼54–387) and strong negative Eu anomalies (Eu/Eu*: 0.13–0.41) are quite apparent in these granitoids. The geochemical characteristics together with mineralogical features such as presence of biotite±hornblende as the dominant ferromagnesian mineral phases point towards intracrustal magma source, i.e. derivation of magma by partial melting of probably tonalitic igneous protolith at moderate crustal levels for felsic granites, whereas hybrid granitoids appear to be products of juvenile mantle-crust interaction, in an active continental margin setting.

Anomalous radioelemental concentration (upto 0.033% U3O8 and 0.30% ThO2; n=61) has been recorded in Kinwat granitoids, especially close to the contact zones with mafic intrusives and shear zones. Distribution patterns of heat producing elements (U, Th and K) in these granitoids have indicated substantially high heat production values (9.55–97.78 μWm−3), which might have played important role in uranium remobilisation and concentration by supporting hydrothermal gradient along the dilatant structures. Considering highly labile nature of uranium in this reactivated terrain, the Kinwat granitoids form a fertile provenance to mineralisation under favourable conditions, especially in Neoproterozoic cover sediments in adjoining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altherr, R., Holl, A., Hegner, E., Langer, C. and Kreuzer, H. (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, v.50, pp.51–73.

    Article  Google Scholar 

  • Ashwal, L.D., Morgan, P., Kelley, S.A. and Percival, J.A. (1987) Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth Planet. Sci. Lett., v.85, pp.439–450.

    Article  Google Scholar 

  • Balasubrahmanyan, M.N. (1978) Geochronology and geochemistry of Archean tonalitic gneisses and granites of South Kanara District, Karnataka State, India. In: B.F. Windley and S.M. Naqvi (Eds.), The Origin and Evolution of Archean Continental Crust. Elsevier, Amsterdam, pp.59–77.

    Google Scholar 

  • Banerjee, Rahul (1997) Petrography and Geochemistry of Palaeoproterozoic Granitoids and associated Uranium and Cerianite-bearing Granite Pegmatite of Diglur and adjoining areas, Nanded district, Maharashtra. Expl. Res. Atm. Min., v.10, pp.47–54.

    Google Scholar 

  • Banerjee, Rahul (2007) Geological, Geochemical and Geochronological characterisation of crystallines for Uranium and Rare Metal and Rare Earth Mineralisation in parts of Nanded district, Maharashtra. Unpublished Ph.D. Thesis, RTM Nagpur University, Nagpur.

    Google Scholar 

  • Banerjee, Rahul, Jain, S.K. and Shivkumar, K. (2008) Geochemistry and Petrogenesis of uraninite bearing Granitoids and Radioactive Phosphatic Cherty Cataclasites of Thadisaoli area, Nanded district, Maharashtra. Mem. Geol. Soc. India, no.73, pp.55–84.

  • Banerjee, Rahul, Veena, K., Pandey, B.K. and Parthasarathy, T.N. (1993) Rb-Sr Geochronology of the Radioactive Granites of Nanded area, Maharashtra, India. Jour. Atm. Min. Sci., v.1, pp. 111–117.

    Google Scholar 

  • Barker, F. (1979) Trondhjemite: definition, environment and hypothesis of origin. In: F. Barker (Ed.), Trondhjemites, Decites and Related Rocks. Elsevier, Amsterdam, pp.1–12.

    Google Scholar 

  • Barbarin, B. (1990) Granitoids: main petrogenetic classification in relation to origin and tectonic setting. Geol. Jour., v.25, pp.227–238.

    Article  Google Scholar 

  • Basham, I.R. (1981) Some application of autoradiographs in textural analysis of uranium-bearing samples — a discussion. Econ. Geol., v.76, pp.974–982.

    Article  Google Scholar 

  • Basham, I.R. and Easternbrook, G.D. (1977) Alpha particle autoradiography of geological specimen by use of cellulose nitrate detectors. Tran. Inst. Min. Met., v.86, sec.B, pp. 96–98.

    Google Scholar 

  • Batchelor, R.A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chem. Geol., v.48, pp.43–55.

    Article  Google Scholar 

  • Bhaskar Rao, Y.J., Sivaram, T.V., Pantulu, G.V.C., Gopalan, K. and Naqvi, S.M. (1992) Rb-Sr ages of late Archean metavolcanics and granites, Dharwar craton, South India, and evidence for Early Proterozoic thermotectonic events. Precambrian Res., v.59, pp.145–170.

    Article  Google Scholar 

  • Birch, F. (1954) Heat from radioactivity. In: H. Faul (Ed.), Nuclear Geology. John Wiley and Sons., pp.148–174.

  • Bonin, B. (1990) From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol. Jour.,W.S. Pitcher Spec. Issue, v.25, pp.261–270.

    Google Scholar 

  • Boyle, R.W. (1982) Geochemical Prospecting for Uranium and Thorium Deposits. Elsevier, Amsterdam, 498p.

    Google Scholar 

  • Boynton, W. (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Ed.), Rare Earth Element Geochemistry, Elsevier, pp.63–114.

  • Brown, G.C., Cassidy, J., Oxburgh, E.R., Plant, J., Sabine, P.A. and Watson, J.V. (1980) Basement heat flow and metalliferous mineralisation in England and Wales. Nature, v.288, no.5792, pp. 657–659.

    Article  Google Scholar 

  • Carroll, R.M. and Wyllie, P.J. (1990) The system tonalite-H2O at 15 kbar and the genesis of calc-alkaline magmas. American Mineralogist, v.75, pp.345–357.

    Google Scholar 

  • Cermak, V. and Jessop, A.M. (1971) Heat flow, heat generation and crustal temperature in the Kapuskasing area of the Canadian Shield. Tectonophysics, v.11, pp.287–303.

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V.N. and Hegde, G.V. (1997) The Dharwar craton, southern India and its Late Archean plate tectonic setting: current interpretations and controversies. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.106, pp.249–258.

    Google Scholar 

  • Chadwick, B., Vasudev, V.N., Hegde, G.V. and Nutman, A.P. (2007) Structure and SHRIMP U/Pb Zircon Ages of Granites Adjacent to the Chitradurga Schist Belt: Implications for Neoarchaean Convergence in the Dharwar Craton, Southern India. Jour. Geol. Soc. India, v.69, pp.5–24.

    Google Scholar 

  • Chappell, B.W. (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, v.46, pp.535–551.

    Article  Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geol. v.8, pp.173–174.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1992) I- and S-type granites in the Lachlan Fold Belt. Trans. Roy. Soc. Edinburgh: Earth Sciences, v.83, pp.1–26.

    Google Scholar 

  • Clarke, D.B. (1981) Peraluminous granites. Can. Miner., v.19, pp.1–2.

    Google Scholar 

  • Clarke, D.B. (1992) Granitoid rocks. Topics in the Earth Sciences 7, Chapman and Hall, London, 283p.

    Google Scholar 

  • Clarke, F.W. (1924) The data of geochemistry (5th Ed.). USGS Bull., no.770, 841p.

  • Condie, K.C. (1976) Plate Tectonics and Crustal Evolution. Pergamon Press, 288p.

  • Condie, K.C. (1994) Archaean crustal evolution. Developments in Precamb. Geol., Vol. 11, Elsevier, 528p.

  • Condie, K.C., Belousova, E., Griffin, W.I. and Sircombe, K.N. (2009) Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res., v.15, pp.228–242.

    Article  Google Scholar 

  • Condie, K.C., Bowling, G.P. and Allen, P. (1986) Origin of granites in Archean high grade terrain, southern India. Contrib. Mineral. Petrol., v.92, pp.92–103.

    Article  Google Scholar 

  • Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The interpretation of igneous rocks. Allen and Unwin, London, 450p.

    Google Scholar 

  • Dahlkamp, F.J. (1993) Uranium Ore Deposits. Springer-Verlag, Berlin, 460p.

    Google Scholar 

  • Davis, J.C. (1986) Statistics and data analysis in Geology (2nd Edn.). John Wiley, pp.468–525.

  • Debon, F. and Lefort, P. (1983) A chemical mineralogical classification of common plutonic rocks and associations. Trans. Roy. Soc. Edinburgh, Earth Sci., v.73, pp.135–149.

    Google Scholar 

  • de La Roche H., Leterrier, J, Grande C.P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses — its relationships and current nomenclature. Chem. Geol., v.29, pp.183–210.

    Article  Google Scholar 

  • Dewey, J.F. and Burke, C.A. (1973) Tibetan variscan and Precambrian basement reactivation: Product of continental collision. Jour. Geol., v.81, pp.683–692.

    Article  Google Scholar 

  • Drüppel, K., Mccready, A.J. and Stumpfl, E.F. (2009) High-K granites of the Rum Jungle Complex, N. Australia: insights into the Late Archean crustal evolution of the North Australian Craton. Lithos, v.111, pp.203–219.

    Article  Google Scholar 

  • Drury, S.A., Harris, N.B.W., Holt, R.W., Reeves-Smith, G.J. and Wightman, T.T. (1984) Precambrian tectonics and crustal evolution in south India. Jour. Geol., v.92, pp.3–20.

    Article  Google Scholar 

  • Fehn, U., Cathies, L.M. and Holland, H.D. (1978) Hydrothermal convection and uranium deposits in abnormally radioactive plutons. Econ. Geol., v.73, pp.1556–1566.

    Article  Google Scholar 

  • Ferguson, J., Chappell, B.W. And Goleby, A.B. (1980) Granitoids in the Pine Creek Geosyncline. In: J. Ferguson, and A.B. Goleby (Eds.), Uranium in Pine Creek Geosyncline. IAEA, Vienna, pp.73–90.

    Google Scholar 

  • Frondel, C. (1958) Systematic mineralogy of uranium and thorium. Geol. Surv. Bull. 1064, U.S. Govt. Printing Office, Washington D.C., 400p.

    Google Scholar 

  • Förster, H.-J., Tischendorf, G. and Trumbull, R.B. (1997) An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, v.40, pp.261–293.

    Article  Google Scholar 

  • Frost, C.D., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, B.R. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.12, pp.2033–2048.

    Article  Google Scholar 

  • Frost, C.D., Frost, B.R., Chamberlain, K.R. and Hulsebosch, T.P. (1998) The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Res., v.89, pp.145–173.

    Article  Google Scholar 

  • Gardien, V., Thompson, A.B. and Ulmer, P. (2000) Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole. Jour. Petrol., v.41, pp.651–666.

    Article  Google Scholar 

  • Geological Survey of India (1980) Geological map of Adilabad Quadrangle, Andhra Pradesh-Maharashtra, on 1: 2,53,440 scale.

  • Geological Survey of India (2001) District Resource Map of Nanded District, Maharashtra, on 1: 3,00,000 scale with Explanatory brochure.

  • Goodell, P.C. (1985) Classification and model of uranium deposits in volcanic environments. In: Uranium deposits in volcanic rocks, Proceedings IAEA, Texas, April 1984. IAEA-TC-490/8, pp.1–16.

  • Gopal Reddy, T., Suresh, G. and Rao, N.V. (1998) Classification and characterization of the Peninsular Gneissic Complex in the Eastern Block of Dharwar craton. In: National Seminar on Conceptual models on the evolution of Granite-Greenstone Belts, Granulite terrains and associated Mineral Deposits, Abstract volume, The Indian Mineralogist, v.32, pp.9–12.

    Google Scholar 

  • Harris, N.B.W., Duyverman, H.J. and Almond, D.C. (1983). The trace element and isotope geochemistry of the Sabaloka igneous complex, Sudan. Jour. Geol. Soc. London, v.140, pp.245–256.

    Article  Google Scholar 

  • Heinrich, E. Wm. (1958) Mineralogy and geology of radioactive raw materials. McGraw-Hill Book Co., Inc., New York, 654p.

    Google Scholar 

  • Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Can. Jour. Earth Sci., v.8, pp.523–548.

    Google Scholar 

  • Jackson, N.J., Drysdall, A.R. and Stoeser, D.B. (1985) Alkali granites related Nb-Zr-REE-U-Th mineralisation in the Arabian Shield. In: High heat production (HHP) granites, hydrothermal circulation and ore genesis, Institute of Mining and Metallurgy, London, pp.479–488.

  • Jayananda, M., Chardon, D., Peucat, J.-J. and Capdevila, R. (2006) 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints. Precambrian Res., v.150,Issue 1–2, pp.1–26.

    Article  Google Scholar 

  • Jayananda, M., Moyen, J.-F., Martin, H., Peucat, J.-J., Auvray, B. and Mahabaleswar, B. (2000) Late Archean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Res., v.99, pp.225–254.

    Article  Google Scholar 

  • Jayananda, M., Martin, H., Peucat, J.-J. and Mahabaleswar, B. (1995a) Late Archean crust-mantle interactions: geochemistry of LREE enriched mantle derived magmas. Example of the Closepet batholith. Contrib. Mineral. Petrol, v.119, pp.314–329.

    Google Scholar 

  • Jayananda, M., Peucat, J.-J., Martin, H. and Mahabaleswar, B. (1995b) Magma mixing in plutonic environment: Geochemical and isotopic evidences from the Closepet batholith southern India. Curr. Sci., v.66(12), pp.928–933.

    Google Scholar 

  • Jayaram, S., Venkatasubramanian, V.S. and Radhakrishna, B.P. (1984) Geochronology and Trace Element distribution in some Tonalitic and Granitic Gneisses of the Dharwar Craton. Mem. Geol. Soc. India, no.4, pp.377–387.

  • Kampunzu, A.B., Tomale, A.R., Zhai, M., Majaule, T. and Modisi, M.P. (2003) Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, v.71, pp.431–460.

    Article  Google Scholar 

  • Kimberley, M.M. (1978) Uranium deposits, their mineralogy, and origin. Mineral. Assoc. Canada, Short Course Handbook, no.3, 523p.

  • Kinnaird, J.A., Batchelor, R.A., Whitley, J.E. and Mackenzie, A.B. (1985) Geochemistry, mineralization and hydrothermal alteration of the Nigerian high heat producing granites. In: High heat production (HHP) granites, hydrothermal circulation and ore genesis, Institute of Mining and Metallurgy, London, pp.169–195.

    Google Scholar 

  • Kochhar, N. (1989) High heat producing granites of the Malani Igneous Suite. Northern Peninsular India. Indian Minerals, v.45, nos.3 & 4, pp.339–346.

    Google Scholar 

  • Kozlov, V.D. (2009) Rare-earth elements as indicators of ore sources and the degree of differentiation and ore potential of rare-metal granite intrusions (eastern Transbaikalia). Russian Geol. Geophy., v.50, pp.29–42.

    Article  Google Scholar 

  • Kusky, T.M. (1993) Collapse of Archaean orogens and the generation of late- to postkinematic granitoids. Geology, v.21, pp.925–928.

    Article  Google Scholar 

  • Kusky, T.M. and Polat, A. (1999) Growth of granite-greenstone terranes at convergent margins, and stabilization of Archaean cratons. Tectonophysics, v.305, pp.45–73.

    Article  Google Scholar 

  • Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Wooley, A.R. and Zanetin, B. (1989). A classification of igneous rocks and glossary of terms. Recommendations of the IUGS Commission on the Systematics of Igneous Rocks. Blackwell, Oxford, 193p.

    Google Scholar 

  • Liégeois, J.-P., Navez, J., Hertogen, J. and Black, R. (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, v.45, pp.1–28.

    Article  Google Scholar 

  • López, S., Castro, A. and Garcia-Casco, A. (2005) Production of granodioritic melt by interaction between hydrous mafic magma and tonalitic crust, Experimental constraints and implications for the generation of Archaean TTG complexes. Lithos, v.79, pp.229–250.

    Article  Google Scholar 

  • López, S., Fernandez, C. and Castro, A. (2006) Evolution of the Archaean continental crust: insights from the experimental study of Archaean granitoids. Curr. Sci., v.91, pp.607–621.

    Google Scholar 

  • Maniar, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., v.101, pp.635–643.

    Article  Google Scholar 

  • Martin, H. (1994) The Archean grey gneisses and the genesis of the continental crust. In: K.C. Condie (Ed.), The Archaean Crustal Evolution. Elsevier, Amsterdam, pp.205–259.

    Chapter  Google Scholar 

  • McCready, A.J., Stumpfl, E.F., Lally, J., Ahmad, M. and Gee, R.D. (2004) Polymetallic mineralisation at the Browns deposit, Rum Jungle Mineral Field, Northern Territory,Australia. Econ. Geol., v.99, pp.257–277.

    Article  Google Scholar 

  • McCready, A.J., Stumpfl, E.F. and Melcher, F. (2003) U/Th-rich bitumen in Archean granites and Palaeoproterozoic metasediments, Rum Jungle Mineral Field, Australia: Implications for mineralizing fluids. Geofluids, v.3, pp.147–159.

    Article  Google Scholar 

  • McDonough, W.F., Sun, S., Ringwood, A.E., Jagoutz, E. and Hofmann, A.W. (1992) K, Rb and Cs in the earth and moon and the evolution of the earth’s mantle. Geochim. Cosmochim. Acta, v.56, pp.1001–1012.

    Article  Google Scholar 

  • Morgan, P. (1985) Crustal radiogenic heat production and the selective survival of ancient continental crust. Proc. 15th Lunar Planet. Sci. Conf., Geophys. Res., v.90, pp.C561–C570.

    Google Scholar 

  • Morgan, P. And Sass, J.H. (1984) Thermal regime of the continental lithosphere. Jour. Geodyn., v.1, pp.143–166.

    Article  Google Scholar 

  • Moyen, J.-F., Martin, H. and Jayananda, M. (2001a) Multielements geochemical modelling during Late Archean crustal growth: the Closepet Granite (South India). Precambrian Res., v.112, pp.87–105.

    Article  Google Scholar 

  • Moyen, J.-F., Nédélec, A., Martin, H. and Jayananda, M. (2001b) Contrasted Granite Emplacement Modes within an oblique crustal section: the Closepet Granite, South India. Phys. Chem. Earth, v.26, pp.295–301.

    Article  Google Scholar 

  • Moyen, J.-F., Martin, H., Jayananda, M. and Auvray, B. (2003) LateArchean granites: a typology based on the Dharwar Craton (India). Precambrian Res., v.127, pp.103–123.

    Article  Google Scholar 

  • Nockolds, S.R. and Allen, R. (1953) The Geochemistry of some Igneous Series. Geochim. Cosmochim. Acta, v.4, pp.105–142.

    Article  Google Scholar 

  • Pagel, M. (1982) The mineralogy and geochemistry of uranium, thorium and rare earth elements in two radioactive granites of the Vosges, France. Min. Mag., v.46, pp.149–161.

    Article  Google Scholar 

  • Pearce, J.A. (1996) Sources and settings of granitic rocks. Episodes, v.19, pp.120–125.

    Google Scholar 

  • Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Jour. Petrol., v.25(4), pp.956–983.

    Google Scholar 

  • Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., v.58, pp.63–81.

    Article  Google Scholar 

  • Plant, J.A., Brown, C.C., Simpson, P.R. and Smith, R.T. (1980) Signatures of metalliferous granites in the Scottish Caladonides. Tran. Inst. Min. Met., London (Sect. B; App. earth sci.), v.89, pp.B198–210.

    Google Scholar 

  • Plant, J.A., O’brien, C., Tarney, J. and Hurdley, J. (1985) Geochemical criteria for the recognition of high heat production granites. In: High heat production (HHP) granites, hydrothermal circulation and ore genesis, Institute of Mining and Metallurgy, London (Sect. B; App. earth sci.), v.94, pp.B263–285.

    Google Scholar 

  • Plant, J.A., Simpson, P.R., Green P.M., Watson, J.V. and Fowler, M.B. (1983) Metalliferous and mineralized Caledonian granites in relation to regional metamorphism and fracture systems in northern Scotland. Tran. Inst. Min. Metal., London (Sect. B; App. earth sci.), v.92, pp.B833–842

    Google Scholar 

  • Radhakrishna, B.P. and Naqvi, S.M. (1986) Precambrian continental crust of India and its evolution. Jour. Geol., v.94, pp.145–166.

    Article  Google Scholar 

  • Radhakrishna, B.P. and Vaidyanadhan, R. (1997) Geology of Karnataka (2nd Edn.). Geol. Soc. India, Bangalore, 353p.

    Google Scholar 

  • Rajesh, H.M. (2008) Petrogenesis of two granites from the Nilgiri and Madurai blocks, southwestern India: Implications for charnockite-calc-alkaline granite and charnockite-alkali (Atype) granite link in high-grade terrains. Precambrian Res., v.162, pp.180–197.

    Article  Google Scholar 

  • Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India (Vol. 1). Geol. Soc. India, 556p.

  • Rickwood, P.C. (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, v.22, pp.247–263.

    Article  Google Scholar 

  • Rogers, J.J.W. and Adams, J.A.S. (1969) Uranium abundances in common igneous rocks. In: K.H. Wedepohl (Ed.), Handbook of Geochemistry. Springer-Verlag, pp.92-E-1–92-E-8.

  • Rogers, J.J.W. and Greenberg, J.K. (1990) Late-orogenic, postorogenic, and anorogenic granites: distinction by majorelement and trace-element chemistry and possible origins. Jour. Geol., v.98, pp.291–309.

    Article  Google Scholar 

  • Rudnick, R.L. (1995) Making continental crust. Nature, v.378, pp.571–578.

    Article  Google Scholar 

  • Sarkar, A., Sarkar, G., Paul, D.K. and Mitra, N.D. (1990) Precambrian geochronology of the central Indian shield, a review. Geol. Surv. India, Spec. Publ., v.28, pp.353–382.

    Google Scholar 

  • Sarvothaman, H. and Leelanandam, C. (1992) Peraluminous, metaluminous and alkali granites from parts of A.P. and Karnataka in Dharwar craton: A critical reappraisal of existing data. Jour. Geol. Soc. India, v.39, no.4, pp.279–292.

    Google Scholar 

  • Shand, S.J. (1943) Eruptive Rocks. Their Genesis, Composition, Classification, and their Relation to Ore-Deposits with a chapter on Meteorite. John Wiley & Sons, New York, 444p.

    Google Scholar 

  • Simpson, P.R., Brown, G.C., Plant, J.A. and Ostle, D. (1979) Uranium mineralization and granite magmatism in the British Isles. Phil. Trans. Roy. Soc. London, v.A291, pp.385–412.

    Google Scholar 

  • Simpson, P.R. and Plant, J.A. (1984) Role of high heat production granites in uranium province introduction. In: B. De Vivo, F. Ippolito, G. Capaldi and P.R. Simpson (Eds.), Uranium Geochemistry, Mineralogy, Geology Exploration and Resources. Inst. Min. Met., London, pp.167–178.

    Google Scholar 

  • Singh, J. and Johannes, W. (1996) Dehydration melting of tonalities. Part II. Composition of melts and fluids. Contrib. Mineral. Petrol., v.125, pp.26–44.

    Article  Google Scholar 

  • Smeeth, W.F. (1916) Outline of the geological history of Mysore. Bull. Mysore Geol. Dept., no.6, 22p.

  • Smithies, R.H., Champion, D.C. and Cassidy, K.F. (2003) Formation of Earth’s early Archean continental crust. Precambrian Res., v.127, pp.89–101.

    Article  Google Scholar 

  • Sutcliffe, R.H., Smith, A.R., Doherty, W. and Bernett, R.L. (1990) Mantle derivation of Archean amphibole-bearing granitoids and associated mafic rocks: evidence from the southern Superior Province, Canada. Contrib. Mineral. Petrol., v.105, pp.255–274.

    Article  Google Scholar 

  • Swami Nath, J., Ramakrishnan, M. and Viswanatha, M.N. (1976) Dharwar stratigraphic model and Karnataka craton evolution. Rec. Geol. Surv. India, v.107, pp.149–175.

    Google Scholar 

  • Swami Nath, J. and Ramakrishnan, M. (1981) Early Precambrian Supracrustals of Southern Karnataka. Mem. Geol. Surv. India, v.112, 350p.

  • Taylor, S.R. and Mclennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312p.

    Google Scholar 

  • Thornton, C.P. and Tuttle, O.F. (1969) Chemistry of igneous rocks. I. Differentiation Index. Amer. Jour. Sci., v.258, pp.664–684.

    Google Scholar 

  • Wesanekar, P.R. and Patil, R.R. (2000) Rb-Sr dating of pink Granites of Deglur, Nanded district, Maharashtra, India. In: Proc. Nat. Sem. “Tectonomagmatism, Geochemistry and Metamorphism of Precambrian Terrains”, pp.181–187.

  • Wilson, M. (1989) Igneous Petrogenesis. Unwin Hyman, London, 466p.

    Book  Google Scholar 

  • Windley, B.F. (1995) The evolving continents (3rd Edition). John Wiley, Chichester, 526p.

    Google Scholar 

  • Wood, D.A. (1979) A variably veined subvolcanic upper mantle genetic significance for mid-ocean ridge basalt from geochemical evidence. Geology, v.7, pp.499–503.

    Article  Google Scholar 

  • Zen, E. (1986) Aluminium enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. Jour. Petrol., v.27, pp.1095–1117.

    Google Scholar 

  • Zhai, M. and Liu, W. (2003) Palaeoproterozoic tectonic history of the North China Craton: a review. Precambrian Res., v.122, pp.183–199.

    Article  Google Scholar 

  • Zhang, C.-L., Li, Z.-X., Li, X.-H., Yu, H.-F. and Ye, H.-M. (2007) An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: Age, geochemistry, and tectonic implications. Gondwana Res., v.12, pp.101–112.

    Article  Google Scholar 

  • Zhao, J. and Mcculloch, M.T. (1995) Geochemical and Nd isotopic systematics of granites from the Arunta Inlier, central Australia: implications for Proterozoic crustal evolution. Precambrian Res., v.71, pp.265–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, R., Shivkumar, K. Geochemistry and petrogenesis of radioactive Palaeoproterozoic granitoids of Kinwat crystalline inlier, Nanded and Yeotmal districts, Maharashtra. J Geol Soc India 75, 596–617 (2010). https://doi.org/10.1007/s12594-010-0054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-010-0054-4

Keywords

Navigation