Skip to main content
Log in

Clay mineralogical studies on Bijawars of the Sonrai basin: Palaeoenvironmental implications and inferences on the uranium mineralization

  • Published:
Journal of the Geological Society of India

Abstract

Clays associated with the Precambrian unconformity-related (sensu lato) uranium mineralization that occur along fractures of Rohini carbonate, Bandai sandstone and clay-organic rich black carbonaceous Gorakalan shale of the Sonrai Formation from Bijawar Group is significant. Nature and structural complexity of these clays have been studied to understand depositional mechanism and palaeoenvironmental conditions responsible for the restricted enrichment of uranium in the Sonrai basin. Clays (<2 μm fraction) separated from indurate sedimentary rocks by disaggregation, chemical treatment and centrifugation were examined using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Presence of tv-1M type illite is inferred from the Rohini and Bandai Members of the Sonrai Formation, indicative of high fluid/rock interaction and super-saturation state of the fluids available in proximity with the uranium mineralization. It is observed that the Sonrai Formation is characterized by kaolinite > chlorite > illite > smectite mineral assemblages, whereas, Solda Formation contains kaolinite > illite > chlorite clays. It has been found that the former mineral assemblage resulted from the alteration process is associated with the uranium mineralization and follow progressive reaction series, indicating palaeoenvironmental (cycles of tropical humid to semi-arid/arid) changes prevailed during maturation of the Sonrai basin. The hydrothermal activity possibly associated with Kurrat volcanics is accountable for the clay mineral alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J.H., Peacor, D.R. and Coombs, D.S. (1988) Formation mechanisms of illite, chlorite and mixed-layer illite chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zealand. Contrib. Mineral. Petrol., v.99, pp.82–89.

    Article  Google Scholar 

  • Alexander, L. and Klug, H.P. (1948) Basic aspects of x-ray absorption in quantitative diffraction analysis of powder mixtures. Anal. Chem., v.20, pp.886–889.

    Article  Google Scholar 

  • Alt, J. (1999) Very low-grade hydrothermal metamorphism of basic igneous rocks in Low-grade metamorphism. In: M. Frey and D. Robinson (Eds.). Blackwell, Oxford, pp.169–201.

    Google Scholar 

  • Beaufort, D., Meunier, A., Patrier, P. and Ottaviani, M.M. (1992) Significance of the chemical variations in assemblages including epidote and or chlorite in the fossil geothermal field of Saint Martin (Lesser Antilles). Jour.Volcan. Geotherm. Res., v.51, pp.95–114.

    Article  Google Scholar 

  • Beaufort, D., Patrier, P. and Laverret, E. (2005) Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers uranium field, Northern Territory, Australia. Econ. Geol., v.100(3), pp.515–536.

    Google Scholar 

  • Berger, I.A. (1974) The role of organic matter in the accumulation of uranium: The organic geochemistry of coal-uranium association. Proc. Series (IAEA, IAEA-SM 183/29), pp.99–123.

  • Biscay, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., v.76, pp.803–832.

    Article  Google Scholar 

  • Blatt, H., Middleton, G.V. and Murray, R.C. (1980) Origin of Sedimentary Rocks. Englewood Cliffs, N.J., Prentice Hall, 782p.

    Google Scholar 

  • Boles, J.E. and Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation. Jour. Sediment. Petrol., v.49, pp.55–70.

    Google Scholar 

  • Borovec, Z. (1981) The Adsorption of Uranyl Species by Fine Clay. Chem. Geol., v.32, pp.45–58.

    Article  Google Scholar 

  • Brime, C. (1981) Post depositional transformation of clays in Palaeozoic rocks of northwest Spain. Clays and Clay Mineral., p.16.

  • Brookins, D.G. (1981) Geochemistry of clay minerals for uranium exploration in the Grants mineral belt, New Mexico. Miner. Diposit, v.17(1), pp.1432–1866.

    Google Scholar 

  • Brown, G. (1961) The X-ray identification and crystal structure of clay minerals. Miner. Soc. London, 544p.

  • Davey, P.T. and Scott, T.R. (1956) Adsorption of uranium on clay minerals. Nature, v.178, 1195p.

  • Drever, J.J. (1973) The preparation of oriented clay mineral specimens for X-ray diffraction of analysis by a filter membrane peel technique. Amer. Mineral., v.58, pp.553–554.

    Google Scholar 

  • Drief, A. and Nieto, F. (2000) Chemical composition of smectites formed in clastic sediments: Implications for the smectite-illite transformation. Clay Mineral., v.35, pp.665–678.

    Article  Google Scholar 

  • Dunoyer De Segongac, G. (1970) The transformation of clay minerals during diagenesis and lowgrade metamorphism. Sedimentology, v.15, pp.281–348.

    Article  Google Scholar 

  • Eberl, D.D. and Srodon, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Amer. Miner., v.73, pp.1335–1345.

    Google Scholar 

  • Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. and Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Mineral., v.28, pp.325–352.

    Article  Google Scholar 

  • Essene, E.J. and Peacor, D.R. (1995) Clay mineral thermometry a critical perspective. Clays and Clay Mineral., v.43, pp.540–553.

    Article  Google Scholar 

  • Frey, M. and Robinson, D. (1999) Low-Grade Metamorphism. London, Blackwell Science, pp.29–31.

  • Grim, R.E., Bradley W.F. and Brown, G. (1951) X-ray identification and crystal structures of clay minerals. In: G.W. Brindley (Ed). Mineral. Soc. London, pp.138–172.

  • Guggenheim, S., Bain, D., Bergaya, F., Brigatti, M.F., Drits, V..A., Eberl, D.D., Formoso, M.L.L., Galan, E., Merriman, R.J., Peacor, D.R., Stanjek, H. and Watanabe T. (2002) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “crystallinity index”. Clay Minerals, v.37, pp.389–393.

    Article  Google Scholar 

  • Harper, D.A., Longstaffe, F.J., Wadleigh, M.A. and Mcnutt, R.H. (1995) Secondary K-feldspar at the Precambrian-Paleozoic unconformity, southwestern Ontario. Can. Jour. Earth Sci., v.32, pp.1432–1450.

    Article  Google Scholar 

  • Hashimoto, Y., Tadai, O., Tanimizu, M., Tanikawa, W., Hirono, T., Lin, W., Mishima, T., Sakaguchi, M., Soh W., Song, S.R., Aoike, K., Ishikawa, T., Murayama, M., Fujimoto, K., Fukuchi, T., Ikehara, M., Ito, H., Kikuta, H., Kinoshita, M., Masuda, K., Matsubara, T., Matsubayashi, O., Mizoguchi, K., Nakamura, N., Otsuki, K., Shimamoto, T., Sone, H. and Takahashi, M., (2008) Characteristics of chlorites in seismogenic fault zones: the Taiwan Chelungpu fault drilling project (TCDP) core sample. Earth, v.3, 16p.

  • Hoeve, J. and Quirt, D. (1987) A stationary redox front as a critical factor in the formation of high grade unconformity-type uranium ores in the Athabasca basin, Saskatchewan, Canada. Bull. Deposit. Mineral., v.110, pp.157–171.

    Google Scholar 

  • Hooton, D.H. and Giorgetta, N.E. (1977) Quantitative x-ray diffraction analysis by a direct calculation method. X-ray Spect., v.6(1), pp.2–5.

    Article  Google Scholar 

  • Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: Mineralogical and chemical evidence. Geol. Soc. Amer. Bull., v.87, pp.725–737.

    Article  Google Scholar 

  • Iida, Y. (1993) Alteration and ore-forming processes of unconformity related uranium deposits. Resour. Geol., v.15, pp.299–308.

    Google Scholar 

  • Iman, M.B. and Shaw, E.H.F. (1985) The diagenesis of Neogene clastic sediments from the Bengal basins Bangladesh. Jour. Sediment. Petrol., v.55, pp.665–671.

    Google Scholar 

  • Izquierdo, G., Cathelmeau, M. and Alfonsom, (1995) Clay minerals, fluid inclusions and stabilized temperature estimation in two wells from Los Azufres geothermal field, Mexico. Proceedings of the world geothermal congress, Florence, Italy. Internat. Geothermal Assoc., pp.1083–1086.

    Google Scholar 

  • Jackson, M.L. (1969) Soil chemical analysis advanced course, 5th print. Department of Soil Science University, Wisconsin, Madison WI, 894p.

    Google Scholar 

  • Jones, B.F. and Galan, E. (1988) Sepiolite and palygorskite: Hydrous phyllosilicates (Exclusive of micas). In: S.W. Bailey (Ed). Reviews in Mineralogy 19, Mineral. Soc. Amer., pp.631–674.

  • Keil, R.G., Monflugon, D.B., Prahl, F.G. and Hedges, J.I. (1994) Sorptive preservation of labile organic matter in marine sediments. Nature, v.370, pp.549–552.

    Article  Google Scholar 

  • Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. In: Rocks G. Larsen and G.V. Chilingar, (Eds.), Diagenesis of Sediments and Sedimentary Elsevier, Amsterdam. pp.289–493.

    Google Scholar 

  • Kubler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenese, temprature et calorimetrie. In: M. Lagache, (Ed.), Thermometrie et Barometrie Geologiques. Societe Francaise Mineralogie et de Cristallographie, pp.489–596.

  • Laird, D.A. (2006) Influence of layer charge on swelling of smectites, Appl. Clay Sci. v.34, pp.74–87.

    Article  Google Scholar 

  • Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. and Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Minerals, v.37, pp.1–22.

    Article  Google Scholar 

  • Laverret E., Mas, P.P., Beaufort, D., Kister, P., Quirt, D., Bruneton, P. and Clauer, N. (2006) Mineralogy and geochemistry of the host-rock alterations associated with the Shea Creek unconformity-type uranium deposits. Athabasca basin, Saskatchewan, Canada. Part-1. spatial variation of illite properties. Clays and Clay Mineral., v.54(3), pp.275–294.

    Article  Google Scholar 

  • Madejova, J. (2003) FTIR techniques in clay mineral studies, Vib. Spectrosc., v.31, pp.1–10.

    Article  Google Scholar 

  • Mahadevan, T.M. (1986) Space-time controls in Precambrian uranium mineralisation in India. Jour. Geol. Soc. India, v.27, pp.47–62.

    Google Scholar 

  • Merriman, R.J. and Peacor, D.R. (1999) Very low grade metapelites: Mineralogy, microfabrics and measuring reaction progress. In: M. Frey and D. Robinson (Eds.), Low-Grade Metamorphism. Blackwell Science Ltd., Oxford, pp.10–60.

    Google Scholar 

  • Mishra, B. (1996) Annual report on the exploratory drilling at Sonrai, Lalitpur District., U.P., AMD.

    Google Scholar 

  • Morse, J.W. and Casey, J.C. (1988) Ostwald processes and mineral paragenesis in sediments. Amer. Jour. Sci., v.288, pp.537–560.

    Article  Google Scholar 

  • Pacquet, A. and Weber, F. (1993) Petrographie et mineralogie des halos d’alteration autour du gisement de Cigare Lake et leurs relations avec les mineralisations. Can. Jour. Earth Sci., v.30, pp.674–688.

    Article  Google Scholar 

  • Patrier, P., Beaufort, D., Laverret, E. and Bruneton, P. (2003) High-grade diagenetic 2M1 illite from the Middle Proterozoic Kombolgie Formation (Northern Territory, Australia). Clays Clay Minerals., v.51, pp.102–116.

    Article  Google Scholar 

  • Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. In: P.R. Buseck (Eds.). Reviews in Mineralogy. Mineral. Soc. Amer., v.27, pp.335–380.

  • Percival, J.B. and Kodama, H. (1989) Sudoite from Cigar Lake, Saskatchewan. Can. Mineral., v.27, pp.633–641.

    Google Scholar 

  • Pollastro, R.M. (1982) A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis: Modifications to Drever’s filter-membrane peel technique. USGS Open File Report, pp.82–71.

  • Poppe, L.J., Paskevich, V.F., Hathaway, J.C. and Blackwood, D.S. (2002) A laboratory manual for X-ray powder diffraction. USGS Open File Report, pp.1–41.

  • Prakash, R., Swarup, P. and Srivastava, R.N. (1975) Geology and mineralization in the southern parts of Bundelkhand in Lalitpur dist., U.P. Jour. Geol. Soc. India, v.16, pp.143–156.

    Google Scholar 

  • Ramaekers, P., Jefferson, C.W., Yeo, G.M., Collier, B., Long, D.G.F., Catuneanu, O., Bernier, S., Kupsch, B., Post, R., Drever, G., Mchardy, S., Jiricka, D., Cutts, C. And Wheatley, K. (2005a) Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta.

  • Ramaekers, P., Yeo, G.M., Jefferson, C.W., Collier, B., Long, D.G.F., Catuneanu, O., Bernier, S., Kupsch, B., Post, R., Drever, G., Mchardy, S., Jiricka, D., Cutts, C. and Wheatley, K. (2005b) Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta. In: C.W. Jefferson and G. Delaney, (Eds.), Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geol. Surv. Canada, Bull., v.588.

  • Retallack, G.J. (1986a) The fossil record of soils. In: V.P. Wright (Ed.), Paleosols: Their recognition and interpretation. Oxford, Blackwells, 315p.

    Google Scholar 

  • Roy, M., Bagchi, A.K., Babu, E.V.S.S.K., Mishra, B. and Krishnamurithy, P. (2004) Petromineragraphy and mineral chemistry of bituminous shale-hosted uranium mineralization at Sonrai, Lalitpur district, Uttar Prdaesh. Jour. Geol. Soc. India, v.63, pp.291–298.

    Google Scholar 

  • Roy, M., Roy, A.K. and Parihar, P.S. (2008) Radioactive carbonaceous material within the fractured Bundelkhand granite of Gwalior Basin at Dursendi, Gwalior district. Madhya Pradesh — A petrographic revelation. Jour. Geol. Soc. India, v.72, pp.479–483.

    Google Scholar 

  • RUIZ Cruz, M.D. and Andreo, B. (1996) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Mineral., v.31, pp.133–52.

    Article  Google Scholar 

  • Sharma, K.K. (2000) Evolution of the Archaean-Palaeoproterozoic crust of the Bundelkhand Craton, Northern Indian Shield. In: O.P. Verma and T.M. Mahadevan (Eds.), Research Highlights in Earth Sciences, DST, India. Geol. Cong., v.1, pp.95–105.

  • Singh, J. and Bagchi, A.K. (1994) Possibility of occurrence of breccia complex-cum-Iron oxide type uranium deposit at the contact of the Solda and Sonrai Formations of Bijawar Group in Lalitpur Dist., U.P. Extended Abst. On First order Uranium exploration Target selection in the Proterozoic Solda India, AMD, pp.5–6.

  • Singh, K.K. and Goyal, R.S. (1972) Copper mineralisation in the Bijawar series around Sonrai, District Jhansi, U.P. Jour. Geol. Soc. India, v.13(4), pp.252–360.

    Google Scholar 

  • Sopuck, V.J., de Carle, E.M. and Cooper, B. (1983) The application of lithogeochemistry in the search for unconformity-type uranium deposits, northern Saskatchewan, Canada, In: G.R. Parslow (Eds.), Jour. Geochem. Explor., v.19, pp.77–99.

  • Srivastava, R.N. (1989) Bijawar phospherites at Sonrai geology, sedimentation, exploration strategy and origin. Mem. Geol. Soc. India, v.13, pp.47–59.

    Google Scholar 

  • Srodon, J. (1984) X-ray powder diffraction identification of illitic materials: Clays and Clay Miner., v.32, p.337–349.

    Google Scholar 

  • Tan, K.H. (2005) Soil sampling, preparation, and analysis. (2nd ed.). CRC press, Taylor & Francis Group. 623p.

  • Tucker, M. (Ed.) (1988) Techniques in Sedimentology. Blackwell Science Inc, 408p.

  • Upadhyaya, T.P., Raju, S. and Singh, D.P. (1990) Second generation mapping of Bundelkhand granites and Bijawar group of rocks in parts of Lalitpur district, U.P., Geol. Surv. India records, v.126, pp.44–48.

    Google Scholar 

  • van De Kamp, P.C. (2008) Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales. Clays and Clay Miner., v.56(1), pp.66–81.

    Article  Google Scholar 

  • Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of their Occurrence. Elsevier, Amsterdam, 427p.

    Google Scholar 

  • Weaver, C.E. (1958b) Geological interpretation of argillaceous sedimentary rocks. Bull. Amer. Assoc. Petrol. Geol., v.42, pp.254–271.

    Google Scholar 

  • Weaver, C.E. (1958c) A discussion of the origin of clay minerals in sedimentary rocks. Clays Clay Mineral., v.5, pp.159–173.

    Article  Google Scholar 

  • Wilson, M.J. (1987) A handbook of determinative methods in clay mineralogy. In: M.J. Wilson (Ed). Blackie-Son Ltd., London, 308 p.

    Google Scholar 

  • Yang, Y.L. and Aplin, A.C. (1997) A method for the disaggregation of mudstones. Sedimentology, v.44, pp.559–562.

    Article  Google Scholar 

  • Ziegler, K. and Longstaffe, F.J. (2000) Multiple episodes of clay alteration at the Precambrian/Paleozoic unconformity, Appalachian Basin: Isotopic evidence for long-distance and local fluid migrations. Clays and Clay Mineral., v.48(4), pp.474–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, S.K., Shrivastava, J.P. & Bhairam, C.L. Clay mineralogical studies on Bijawars of the Sonrai basin: Palaeoenvironmental implications and inferences on the uranium mineralization. J Geol Soc India 79, 117–134 (2012). https://doi.org/10.1007/s12594-012-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0028-9

Keywords

Navigation