Skip to main content
Log in

Quantification of microcrack anisotropy in quartzite — a comparison between experimentally undeformed and deformed samples

  • Published:
Journal of the Geological Society of India

Abstract

In this paper, microcrack patterns in a quartzite are quantified using fractal geometry based methods. Since the quartzite does not show a mesoscopic foliation, the fabric was recognized using anisotropy of magnetic susceptibility (AMS) analysis. Microcracks were investigated in thin sections prepared along the three principal planes of the AMS ellipsoid. Point load tests were performed on cores drilled parallel as well as perpendicular to the magnetic foliation. After experimental deformation, thin sections were prepared in two orientations — (a) parallel to the plane of failure (i.e., parallel to the direction of loading), (b) perpendicular to the plane of failure (i.e., perpendicular to the direction of loading), and microcrack patterns in these sections were investigated. The box-counting method of fractal analysis was first applied to microcracks traced from SEM images from each thin section of the experimentally undeformed as well as deformed samples to establish the fractal nature of the microcrack pattern. It was found that in thin sections perpendicular to the direction of loading, the box (fractal) dimension tends to marginally increase. This is inferred as a manifestation of the increase in complexity of the pattern. The software AMOCADO, which is based on the modified Cantor Dust method of fractal analysis, was applied to microcrack pattern from each thin section in order to quantify the pattern anisotropy. It is noted that the anisotropy significantly reduces in sections perpendicular to the loading direction. SEM data are presented to demonstrate that this reduction in anisotropy is on account of generation and/or growth of new cracks in random orientations. It is envisaged that the approach adopted in this investigation maybe useful in rock mechanics and mineral-resource applications in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM (2001) Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. Designation D4543.

  • ASTM(2001) Standard method for determination of the point load strength index of rock. Designation D5731.

  • Babadagli, T. (2001) Fractal analysis of 2-D fracture networks of geothermal reservoirs in southwestern Turkey. Jour. Volcano. Geotherm. Res., v.112, pp.83–103.

    Article  Google Scholar 

  • Babadagli, T. (2000) Evaluation of outcrop fracture patterns of geothermal reservoirs in southwestern Turkey. Proc. World Geothermal Congress, pp.2521–2526.

  • Barton, C.C. (1995) Fractal analysis of scaling and spatial clustering of fractures. In: C.C. Barton and P.R. La Pointe (Eds.), Fractals in the Earth Sciences. Plenum Press, New York, pp.141–178.

    Google Scholar 

  • Barton, C.C. and Larsen, R. (1985) Fractal geometry of twodimensional fracture networks at Yucca Mountain, southwestern Nevada. Proc. Internat. Symp. Fundamentals of Rock Joints, Bjorkliden, Sweden, pp.77–84.

    Google Scholar 

  • Basu, A. (2008) The point load test in rock material characterization. Jour. Engg. Geol., v.XXXV, pp.379–387.

    Google Scholar 

  • Basu, A. and Aydin, A. (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech. Rock Eng., v.39, pp.483–490.

    Article  Google Scholar 

  • Basu, A. and Kamran, M. (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int. Jour. Rock Mech. Min. Sci., v.47, pp.823–828.

    Article  Google Scholar 

  • Bieniawski, Z.T. (1989) Engineering rock mass classifications. New York, Wiley.

  • Blenkinsop, T.J. and Fernandes, T.R.C. (2000) Fractal characterization of particle size distributions in chromitites from the Great Dyke, Zimbabwe. Pure and Appl. Geophys., v.157, pp.505–521.

    Article  Google Scholar 

  • Bobet, A. and Einstein, H.H. (1998) Fracture coalescence in rocktype materials under uniaxial and biaxial compression. Int. Jour. Rock Mech. Min. Sci., v.35, pp.863–888.

    Article  Google Scholar 

  • Boullier, A.M., Charoy, B. and Pollard, P.J. (1994) Fluctuation in porosity and fluid pressure during hydrothermal events: textural evidence in the Emuford District, Australia. Jour. Struct. Geol., v.16, pp.1417–1429.

    Article  Google Scholar 

  • Brace, W.F., Silver, E., Hadley, K. and Goetze, C. (1972) A closer look at cracks and pores. Science, v.178, pp.162–163.

    Article  Google Scholar 

  • Broch, E. (1983) Estimation of strength anisotropy using the point-load test. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.20, pp.181–187.

    Article  Google Scholar 

  • Cello, G. (1997) Fractal analysis of a Quaternary fault array in the central Apennines, Italy. Jour. Struct. Geol., v.19, pp.945–953.

    Article  Google Scholar 

  • Cello, G., Marchegiani, L. and Tondi, E. (2006) Evidence for the existence of a simple relation between earthquake magnitude and the fractal dimension of seismogenic faults: a case study from central Italy. In: G. Cello and B.D. Malamud (Eds.), Fractal Analysis for Natural Hazards. Geol. Soc. London, Spec. Publ., v.261, pp.133–140.

  • Chau, K.T. and Wong, R.H.C. (1996) Uniaxial compressive strength and point load strength. Int. Jour. Rock Mech. Min. Sci. Geomech. Abstr., v.33, pp.183–188.

    Article  Google Scholar 

  • Demartin, B., Hirth, G. and Evans, B. (2004) Experimental constraints on thermal cracking of peridotite at oceanic spreading centers. In: C.R. German, J. Lin, L.M. Parson (Eds.), Mid-oceanic ridges: hydrothermal interactions between the lithosphere and oceans. Geophysical Monograph Series, No.148, pp.167–186.

  • Gerik, A. (2009) Modification and automation of fractal geometry methods: new tools for quantifying rock fabrics and interpreting fabric-forming processes. Unpublished Ph.D. thesis, Technische Universität München, 126 p.

  • Gerik, A. and Kruhl, J.H. (2009) Towards automated pattern quantification: time-efficient assessment of anisotropy of 2D patterns with AMOCADO. Comp. & Geosci., v.35, pp.1087–1097.

    Article  Google Scholar 

  • Gerik, A., Kruhl, J.H. and Caggianelli, A. (2010) Quantification of flow patterns in sheared tonalite crystal-melt mush: application of fractal-geometry methods. Jour. Geol. Soc. India, v.75, pp.210–224.

    Article  Google Scholar 

  • Ghosh M., Mukhopadhyay, D. and Sengupta, P. (2006) Pressure-temperature-deformation history for a part of the Mesoproterozoic fold belt in North Singhbhum, Eastern India. Jour. Asian Earth Sci., v.26, pp.555–574.

    Article  Google Scholar 

  • Gillespie, P.A., Howard, C.D., Walsh, J.J. and Watterson, J. (1993) Measurement and characterisation of spatial distributions of fractures. Tectonophysics, v.226, pp.113–141.

    Article  Google Scholar 

  • Gomez, L.A. and Laubach, S.E. (2006) Rapid digital quantification of microfracture populations. Jour. Struct. Geol., v.28, pp.408–420.

    Article  Google Scholar 

  • Harris, C., Franssen, R. and Loosveld, R. (1991) Fractal analysis of fractures in rocks: the Cantor’s dust method — comment. Tectonophysics, v.198, pp.107–111.

    Article  Google Scholar 

  • Hirata, T. (1989) Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure and Appl. Geophys., v.131, pp.157–170.

    Article  Google Scholar 

  • Hoek, E. and Bieniawski, Z.T. (1965) Brittle rock fracture propagation in rock under compression. Int. Jour. Frac. Mech., v.1, pp.137–155.

    Google Scholar 

  • Hrouda, F. (1993). Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., v.77, pp.237–249.

    Article  Google Scholar 

  • Isakov, E., Ogilvie, S.R., Taylor, C.W. and Glover, P.W.J. (2001) Fluid flow through rough fractures in rocks. I: High resolution aperture determinations. Earth Planet. Sci. Lett., v.191, pp.267–282.

    Article  Google Scholar 

  • ISRM (1985) Suggested method for determining point load strength. Int. Jour. Rock Mech. Min. Sci. Geomech. Abstr., v.22, pp.51–60.

    Article  Google Scholar 

  • Jelínek, V. (1981) Characterization of the magnetic fabric of rocks. Tectonophysics, v.79, pp.T63–T67.

    Article  Google Scholar 

  • Kanaori, Y., Yairi, K. and Ishida, T. (1991) Grain boundary microcracking of granitic rocks from the northeastern region of the Atotsugawa fault, central Japan: SEM backscattered electron images. Engg. Geol., v.30, pp.221–235.

    Article  Google Scholar 

  • Kaye, B.H. (1989) A random walk through fractal dimensions. VCH, Wienheim.

    Google Scholar 

  • Kern, H., Ivankina, T.I., Nikitin, A.N., Lokajíèek, T. and Pros, Z. (2008) The effect of oriented Microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, v.457. pp.143–149.

    Article  Google Scholar 

  • Kranz, R.L. (1983) Microcracks in rocks: a review. Tectonophysics, v.100, pp.449–480.

    Article  Google Scholar 

  • Kruhl, J.H. and Nega, M. (1996) The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geol. Rund., v.85, pp.38–43.

    Article  Google Scholar 

  • Lavallée, Y., Meredith, P.G., Dingwell, D.B., Hess, K.-U., Wassermann, J., Cordonnier, B., Gerik, A. and Kruhl, J.H. (2008) Seismogenic lavas and explosive eruption forecasting. Nature, v.453, pp.507–510.

    Article  Google Scholar 

  • Lloyd, G.E. and Hall, M.G. (1981) Application of scanning electron microscopy to the study of deformed rocks. Tectonophysics, v.78, pp.687–698.

    Article  Google Scholar 

  • Mamtani, M.A. (2010) Strain-rate estimation using fractal analysis of quartz grains in naturally deformed rocks. Jour. Geol. Soc. India, v.75, pp.202–209.

    Article  Google Scholar 

  • Mamtani, M.A. and Greiling, R.O. (2010) Serrated quartz grain boundaries, temperature and strain rate: testing fractal techniques in a syntectonic granite. In: I. Spalla, A.M. Marotta, G. Gosso (Eds), Advances in Interpretation of Geological Processes: Refinement of Multi-Scale Data and Integration in Numerical Modelling. Geol. Soc. London Spec. Publ. v.332, pp.35–48.

  • Mamtani, M.A. and Sengupta, P. (2010) Significance of AMS analysis in evaluating superposed folds in quartzites. Geol. Mag., v.147, pp.910–918.

    Article  Google Scholar 

  • Mamtani, M.A. and Vishnu, C.S. (2012) Does AMS ellipsoid of micaceous quartzite provide information about shape of the strain ellipsoid? Int. Jour. Earth Sci., v.101, pp.693–703.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1983) The fractal geometry of nature. Freeman, New York, 461p.

    Google Scholar 

  • Micklethwaite, S. (2009) Mechanisms of faulting and permeability enhancement during epithermal mineralisation: Cracow goldfield, Australia. Jour. Struct. Geol., v.31, pp.288–300.

    Article  Google Scholar 

  • Moore, D.E. and Lockner, D.A. (1995) The role of microcracking in shear-fracture propagation in granite. Jour. Struct. Geol., v.17, pp.95–111.

    Article  Google Scholar 

  • Mukhopadhyay, D. and Sengupta, S. (1971) Structural geometry and time relation of metamorphic recrystallisation to deformation in the Precambrian rocks near Simulpal, Eastern India. Bull. Geol. Soc. America, v.82, pp.2251–2260.

    Article  Google Scholar 

  • Naha, K. (1965) Metamorphism in relation to stratigraphy, structure and movements in parts of east Singhbhum, eastern India. Quart. Jour. Geol. Min. Metal. Soc. India, v.37, pp.41–95.

    Google Scholar 

  • Nara, Y., Kato, H., Yoneda, T. and Kaneko, K. (2011) Determination of three-dimensional microcrack distribution and principal axes for granite using a polyhedral specimen. Int. Jour. Rock Mech. Min. Sci., v.48, pp.316–335.

    Article  Google Scholar 

  • Ogilvie, S.R., Isakov, E. and Glover, P.W.J. (2006) Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures. Earth Planet. Sci. Lett., v.241, pp.454–465.

    Article  Google Scholar 

  • Ord, A. and Hobbs, B.E. (2011) Microfabrics as energy minimisers: Rotation recrystallisation as an example. Jour. Struct. Geol., v.33, pp.220–243.

    Article  Google Scholar 

  • Panozzo, R. (1987) Two-dimensional strain determination by the inverse SURFOR wheel. Jour. Struct. Geol., v.9, pp.115–119.

    Article  Google Scholar 

  • Passchier, C.W. and Trouw, R.A.J. (2005) Microtectonics, 2nd Edition, Springer-Verlag, Berlin.

    Google Scholar 

  • Paterson, M.S. and Wong, T-F. (2005) Experimental Rock Deformation — The Brittle Field. 2nd Edition, Springer, Berlin.

    Google Scholar 

  • Pérez-López, R., Paredes, C. and Muñoz-martín, A. (2005) Relationship between the fractal dimension anisotropy of the spatial faults distribution and the paleostress fields on a Variscan granitic massif (Central Spain): the F-parameter. Jour. Struct. Geol., v.27, pp.663–677.

    Article  Google Scholar 

  • Piazolo, S. and Passchier, C.W. (2002) Controls on lineation development in low to medium grade shear zones: a study from the Cap de Creus peninsula, NE Spain. Jour. Struct. Geol., v.24, pp.25–44.

    Article  Google Scholar 

  • Raghavan, R. and Chin, L.Y. (2004) Productivity Changes in Reservoirs With Stress-Dependent Permeability. SPE Reservoir Evaluation and Engineering v.7, pp.308–315.

    Google Scholar 

  • Saha, A.K. (1994) Crustal evolution of Singhbhum-North Orissa, Eastern India. Mem. Geol. Soc. India, no.27, 341p.

  • Sprunt, E. and Brace, W.F. (1974) Direct observation of microcavities in crystalline rocks. Int. Jour. Rock Mech. Min. Sci. Geomech. Abstr. 11, 139–150.

    Article  Google Scholar 

  • Stanfors, R., Rhén, I., Tullborg, E.-L. and Wikberg, P. (1999) Overview of geological and hydrogeological conditions of the Äspö hard rock laboratory site. App. Geochem., v.14, pp.819–834.

    Article  Google Scholar 

  • Takahashi, M., Nagahama, H., Masuda, T. and Fujimura, A. (1998) Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a \(\dot \varepsilon\) meter. Jour. Struct. Geol., v.20, pp.269–275.

    Article  Google Scholar 

  • Tapponnier, P. and Brace, W.F. (1976) Development of stressinduced microcracks in Westerly Granite. Int. Jour. Rock Mech. Min. Sci. Geomech. Abstr., v.13, pp.103–112.

    Article  Google Scholar 

  • Tarling, D.H. and Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London.

    Google Scholar 

  • Timms, N.E., Healy, D., Reyes-montes, J.M., Collins, D.S., Prior, D.J. and Young, R.P. (2010) Effects of crystallographic anisotropy on fracture development and acoustic emission in quartz, Jour. Geophys. Res., v.115, B07202, doi:10.1029/2009JB006765.

    Article  Google Scholar 

  • Tran, N.H. and Ravoof, A. (2007) Coupled fluid flow through discrete fracture network: a novel approach. Int. Jour. Math. Comp. in Simulation, v.1, pp.295–299.

    Google Scholar 

  • Tripp, G.I. and Vearncombe, J.R. (2004) Fault/fracture density and mineralization: a contouring method for targeting in gold exploration. Jour. Struct. Geol., v.26, pp.1087–1108.

    Article  Google Scholar 

  • Velde, B., Dubois, J., Touchard, G. and Badri, A. (1990) Fractal analysis of fractures in rocks: the Cantor’s Dust method. Tectonophysics, v.179, pp.345–352.

    Article  Google Scholar 

  • Velde, B., Dubois, J., Moore, D. and Touchard, G. (1991) Fractal patterns of fractures in granites. Earth Planet. Sci. Lett., v.104, pp.25–35.

    Article  Google Scholar 

  • Vishnu, C.S., Mamtani, M.A. and Basu, A. (2010) AMS, ultrasonic P-wave velocity and Rock Strength analysis in quartzites devoid of mesoscopic foliations — implications for rock mechanics studies. Tectonophysics. v.494, pp.191–200.

    Article  Google Scholar 

  • Volland, S. and Kruhl, J.H. (2004) Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW Sardinia. Jour. Struct. Geol., v.26, pp.1499–1510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish A. Mamtani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamtani, M.A., Vishnu, C.S. & Basu, A. Quantification of microcrack anisotropy in quartzite — a comparison between experimentally undeformed and deformed samples. J Geol Soc India 80, 153–166 (2012). https://doi.org/10.1007/s12594-012-0128-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0128-6

Keywords

Navigation