Skip to main content
Log in

Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F, Cl, NO3, HCO3 , SO4 2−) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 , Cl, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ) dominate over strong acids (Cl+SO4 2−) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F, NO3 and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre, L., Franceschi, M., Pouchan, P. and Atteia, O. (2005) Using geochemical data and modeling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Jour. Hydrol., v.305, pp.40–62.

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, (20th ed.), American Public Health Association, Washington DC.

    Google Scholar 

  • Appelo, C.A.J. and Postma, D. (1996) Geochemistry, groundwater and pollution; AA Balkema Publ., U.S.A.

    Google Scholar 

  • Ayers, R.S. and Westcot, D.W. (1985) Water quality for irrigation. FAO Irrigation and Drainage Paper No.20, Rev 1, FAO Rome.

    Google Scholar 

  • Berner, E.K. and Berner, R.A. (1987) The global water cycle: geochemistry and environment, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Bhardwaj, V. and Singh, D.S. (2011) Surface and groundwater quality characterization of Deoria District, Ganga Plain, India. Environ. Earth Sci., v.63, pp.383–395.

    Article  Google Scholar 

  • BIS (2003) Indian standard drinking water specifications IS 10500:1991, edition 2.2 (2003–2009); Bureau of Indian Standards, New Delhi.

    Google Scholar 

  • Cerling, T.E., Pederson, B.L. and Damm, K.L.V. (1989) Sodiumcalcium ion exchange in the weathering of shales: implication for global weathering budgets. Geology, v.17, pp.552–554.

    Article  Google Scholar 

  • CGWB (2010) Groundwater quality in shallow aquifers of India. Central Ground Water Board, Faridabad, India. p.117.

    Google Scholar 

  • Choubisa, S.L. (2001) Endemic fluorosis in southern Rajasthan, India. Fluoride, v.34, pp.61–70.

    Google Scholar 

  • Collins, R. and Jenkins, A. (1996) The impact of agricultural land use on stream chemistry in the middle hills of the Himalayas, Nepal. Jour. Hydrol., v.185, pp.71–86.

    Article  Google Scholar 

  • CPCB (2008) Status of groundwater quality in India-Part II.: Groundwater Quality Series: GWQS/10/2007–2008. Central Pollution Control Board, New Delhi, p.431.

    Google Scholar 

  • Datta, P.S. and Tyagi, S.K. (1996) Major ion chemistry of groundwater of Delhi area: chemical weathering processes and groundwater flow regime. Jour. Geol. Soc. India, v.47, pp.179–188.

    Google Scholar 

  • Deutsch, W.J. (1997) Groundwater geochemistry: fundamentals and application to contamination. CRC Press, Boca Raton.

    Google Scholar 

  • Drever, J.I. (1988) The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Eaton, F.M. (1950) Significance of carbonates in irrigation waters. Soil Sci., v.39, pp.123–133.

    Article  Google Scholar 

  • Fisher, R. and Mullican, W.F. (1997) Hydrochemical evolution of sodium sulphate and sodium chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Hydrogeol. Jour., v.10, pp.455–474.

    Google Scholar 

  • Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • García, M.G., Del, V., Hidalgo, M. and Blessa, M.A. (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol. Jour., v.9, pp.597–610.

    Article  Google Scholar 

  • Garrels, R.M. and Mackenzie, F.T. (1971) Gregor’s denudation of the continents. Nature, v.231, pp. 382–383.

    Article  Google Scholar 

  • Ghosh, A. (2007) Current knowledge on the distribution of arsenic in groundwater in five states of India. Jour. Environ. Sci. Health, Part-A, v.42, pp.1–12.

    Google Scholar 

  • Handa, B.K. (1975) Geochemistry and genesis of fluoride containing groundwater in India. Ground Water, v.13, pp.275–281.

    Article  Google Scholar 

  • Hem (1991) Study and interpretation of the chemical characteristics of natural water. US Geochemical Survey Water Supply Paper 2254, Scientific Publishers, India

    Google Scholar 

  • Hounslow, A.W. (1995) Water quality data: analysis and interpretation. CRC Lewis Publ, New York, USA, p.396.

    Google Scholar 

  • Jacks, G., Bhattacharya, P., Choudhary, V. and Singh K.P. (2005) Controls on the genesis of some high fluoride groundwaters in India. Appl. Geochem., v.20, pp.221–228.

    Article  Google Scholar 

  • Jalali, M. (2007) Assessment of the chemical components of Famenin groundwater, western Iran. Environ. Geochem. Health, v.29, pp.357–374.

    Article  Google Scholar 

  • Karanth, K.R. (1989) Groundwater assessment development and management. Tata McGraw-Hill Publ. Com. Ltd. New Delhi, India.

    Google Scholar 

  • Kelley, W.P. (1946) Permissible composition and concentration of irrigation waters. In: Proc. Amer. Soc. Civil Engg., p. 607.

    Google Scholar 

  • Kumar, G. (2005) Geology of Uttar Pradesh and Uttaranchal. Geological Society of India, Bangalore, India.

    Google Scholar 

  • Kumar, R., Singh, R.D. and Sharma, K.D. (2005) Water resources of India. Curr. Sci., v.89, pp.794–811.

    Google Scholar 

  • Loizidou, M. and Kapetanios, E.G. (1993) Effects of leachates from landfills on underground water quality. Sci. Total Environ. v.128, pp.69–81.

    Article  Google Scholar 

  • Madhunure, P., Sirsikarm, D.Y., Tiwari, A.N., Ranjan, B. and Malpe, D.B. (2007) Occurrence of fluoride in groundwaters of Pandharkawada area, Yavatmal district, Maharashtra, India. Curr. Sci. v.92, pp.675–679.

    Google Scholar 

  • Majumdar, D. and Gupta, N. (2000) Nitrate pollution of groundwater and associated human health disorders. Ind. Jour. Environ. Health, v.2, pp.28–39.

    Google Scholar 

  • Maragella, M., Vitale, C., Petrarulo, M., Rovera, L. and Dutto, F. (1996) Effects of mineral composition of drinking water on risk for stone formation and bone metabolism in idiopathic calcium nephrolithiasis. Clinical Science, v.91, pp.313–318.

    Google Scholar 

  • Mclean, W., Jankowski, J. and Lavitt, N. (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: O. Sililo et al. (Eds.), Groundwater, past achievements and future challenges (pp. 567–573), Balkema, Rotterdam.

    Google Scholar 

  • Misra, A.K. and Mishra, A. (2007) Study of quaternary aquifers in Ganga plain, India: Focus on groundwater salinity, fluoride and fluorosis. Jour. Hazard. Mater., v.144, pp.438–448.

    Article  Google Scholar 

  • Njitchoua, R. and Ngounou, N.B. (1997) Hydrogeochemistry and environmental isotope investigations of the North Diamare plain, Northern Cameroon. Jour. African Earth Sci., v.25, pp.307–316.

    Article  Google Scholar 

  • Paliwal, K.V. (1967) Effects of gypsum application on the quality of irrigation water; The Madras Agr. Jour. v.59, pp.646–647.

    Google Scholar 

  • Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s guide to PHREEQC (ver.2) — A computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Sur. Water Resources Investigations Report, 99-4259, p.310.

    Google Scholar 

  • Piper, A.M. (1944) A graphical procedure in the geochemical interpretation of water analysis. Am. Geophys. Union. Trans., v.25, pp.914–928.

    Article  Google Scholar 

  • Raju, J.N., Dey, S. and Das, K. (2009) Fluoride contamination in groundwaters of Sonbhadra district, Uttar Pradesh, India. Curr. Sci., v.96, pp.979–985.

    Google Scholar 

  • Raju, J.N., Shukla, U.K. and Ram, P. (2011) Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fasturbanizing center in Uttar Pradesh, India. Environ. Monit. Assess., v.173, pp.279–300.

    Google Scholar 

  • Rao, N.S. (2003) Groundwater quality — focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India. Hydrol. Sci. Jour., v.45, pp.835–847.

    Google Scholar 

  • Reddy, D.V., Nagabhushanam, P. and Perters, E. (2011) Village environs as source of nitrate contamination in groundwater: a case study in basaltic geo-environment in central India. Environ. Monit. Assess., v.174, pp.481–492.

    Article  Google Scholar 

  • Rose (2002) Comparative major ion geochemistry of piedmont streams in the Atlanta, Georgia region: possible effects of urbanization. Environ. Geol., v.42, pp.102–113.

    Article  Google Scholar 

  • Sami, K. (1992) Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Jour. Hydrol., v.139, pp.27–48.

    Article  Google Scholar 

  • Sarin, M.M., Krishnaswamy, S., Dilli, K., Somayajulu, B.L.K. and Moore, W.S. (1989) Major ion chemistry of the Ganga -Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim. Acta., v.53, pp.997–1009.

    Article  Google Scholar 

  • Sawyer, C.N. and Mccarty, P.L. (1967) Chemistry of sanitary engineers. 2nd edn. McGraw Hill, New York, USA

    Google Scholar 

  • Saxena, V.K. and Ahmed, S. (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ. Geol., v.40, pp.1084–1087.

    Article  Google Scholar 

  • Saxena, V.K. and Ahmed, S. (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol., v.43, pp.731–736.

    Google Scholar 

  • Schoeller, H. (1977) Geochemistry of Groundwater. In: Groundwater Studies-An International Guide for Research and Practice. UNESCO, Paris Ch.15:1–18.

    Google Scholar 

  • Siever, R. and Woodward, N. (1973) Sorption of silica by clay minerals. Geochim. Cosmochim. Acta., v.37, pp.1851–1880.

    Article  Google Scholar 

  • Singh, R.B. (2000) Environmental consequences of agricultural development: a case study from the Green Revolution state Haryana, India. Agric. Ecosys Environ., v.82, pp.97–103.

    Article  Google Scholar 

  • Singh, V.K., Bikundia, D.S., Sarswat, A. and Mohan, D. (2012) Groundwater quality assessment in the village of LutfullapurNawada, Loni, District Ghaziabad, Uttar Pradesh, India. Environ. Monit. Assess., v.184, pp.4473–4488.

    Article  Google Scholar 

  • Singh, A.K., Mondal, G.C., Singh, P.K., Singh, S., Singh, T.B. and Tewary, B.K. (2005) Hydrochemistry of reservoirs of Damodar River basin, India: weathering processes and water quality assessment. Environ. Geol., v.8, pp.1014–1028.

    Article  Google Scholar 

  • Singh, A.K., Mondal, G.C., Kumar, S., Singh, T.B., Tewary, B.K. and Sinha, A. (2008) Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environ. Geol., v.54, pp.745–758.

    Article  Google Scholar 

  • Srikanth, R. (2009) Challenges of sustainable water quality management in rural India. Curr. Sci., v.3, pp.317–325.

    Google Scholar 

  • Stumm, W., and Morgan, J.J. (1981) Aquatic chemistry. Wiley Interscience, New York

    Google Scholar 

  • Stumm, W. (1992) Chemistry of the soild water interface. Wiley Interscience, New York

    Google Scholar 

  • Subramanian, V. (1974) Water chemistry of the St. Lawrence River. Maritime Sediments, v.10, pp.97–105.

    Google Scholar 

  • Subramanian, V. (2000) Water: quantity-quality perspectives in South Asia. Kingston International Publishers Ltd. Surrey, UK.

    Google Scholar 

  • Susheela, A.K. (1999) Fluorosis management programme in India. Curr. Sci., v.77, pp.1259–1256.

    Google Scholar 

  • Susheela, A.K., Kumar, A., Bhatnagar, M. and Bahadur, M. (1993) Prevalence of endemic fluorosis with gastrointestinal manifestations in people living in some north-Indian villages. Fluoride, v.26, pp.97–104.

    Google Scholar 

  • Teotia, S.P.S. and Teotia, M. (1984) Endemic fluorosis in India: challenging national health problem. Jour. Assoc. Phys. India. v.32, pp.347–352.

    Google Scholar 

  • Umar, R., Khan, M.M.A. and Absar, A. (2006) Groundwater hydrochemistry of a sugarcane cultivation belt in parts of Muzaffarnagar district, Uttar Pradesh, India Environ. Geol., v.49, pp.999–1008.

    Article  Google Scholar 

  • USSL (US Salinity Laboratory) (1954). Diagnosis and improvement of saline and alkali soils. U.S. Department of Agriculture Hand Book, No. 60, p.160.

    Google Scholar 

  • Vidal, M., Melgar, J., Opez, A.L. and Santoalla, M.C. (2000) Spatial and temporal hydrochemical changes in groundwater under the contaminating effects of fertilizers and wastewater. Jour. Environ. Manag., v.60, pp.215–225.

    Article  Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality, V.1, Recommendations, World Health Organisation, Geneva.

    Google Scholar 

  • Wilcox, L.V. (1955) Classification and use of irrigation waters, US Dept of Agricul Cir 969, Washington DC.

    Google Scholar 

  • Yadav, H.R. (2009) Village development planning. Logos Press, New Delhi.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, A.K., Singh, A.K. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh. J Geol Soc India 83, 329–343 (2014). https://doi.org/10.1007/s12594-014-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0045-y

Keywords

Navigation