Skip to main content
Log in

A method for estimating crack-initiation stress of rock materials by porosity

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Crack-initiation stress of a rock under compression is the stress level that marks the initiation of the rock microfracturing process or in other words, the onset of new damage to the rock. This paper proposed a simple methodology with justifications to explore the feasibility of using total and effective porosities as estimators of crack-initiation stress of brittle crystalline rock materials under uniaxial compression. The validity/applicability of the proposed method was examined by an experimental study of granitic materials from Malanjkhand, Madhya Pradesh. It was found that effective porosity depicts better correlation with crack-initiation stress than with uniaxial compressive strength of the granitic materials. On the other hand, total porosity does not show any perceptible correlation with uniaxial compressive strength and crack-initiation stress. Plausible reasons for the nature of the obtained results were also explained in view of rock failure process under compression. It is concluded that following the proposed method, effective porosity can be used as a physical index to obtain a quick estimate of crack-initiation stress of the investigated rocks empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akesson, U., Lindqvist, J.E., Goransson, M. and Stigh, J. (2001) Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing techniques. Bull. Eng. Geol. Env., v.60, pp.277–284.

    Article  Google Scholar 

  • Al-Harthi, A.A., Al-Amri and Shehata, W.M. (1999) The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng. Geol., v.54, pp.313–320.

    Article  Google Scholar 

  • ASTM (2001) Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. Designation D4543.

    Google Scholar 

  • ASTM (2001) Standard test method for unconfined compressive strength of intact rock core specimens. Designation D2938.

    Google Scholar 

  • Basu, A. (2006) Mechanical characterization of granitic rocks of Hong Kong by improved index testing procedures with reference to weathering induced microstructural changes. PhD thesis, The University of Hong Kong.

    Google Scholar 

  • Basu, A., Cellestino, T.B. and Bortolucci, A.A. (2009) Evaluation of rock mechanical behaviors under uniaxial compression with reference to assessed weathering grades. Rock Mech. Rock Eng., v.42, pp.73–93.

    Article  Google Scholar 

  • Bieniawski, Z.T. (1967) Mechanism of brittle rock fracture. Part I. Theory of the fracture process. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., v.4, pp.395–406.

    Article  Google Scholar 

  • Bieniawski, Z.T. (1989) Engineering Rock Mass Classifications. JohnWiley & Sons, New York, pp.251.

    Google Scholar 

  • Bobet, A. and Einstein, H.H. (1996) Fracture coalescence in rock material under uniaxial and biaxial loading. Proceeding of the 2nd North American Rock Mechanics Sympossium: NARMS’96, Montreal, pp.1603–1609.

    Google Scholar 

  • Bobet, A. and Einstein, H.H. (1998) Fracture coalescence in rocktype materials under uniaxial and biaxial compression. Int. Jour. Rock Mech. Min. Sci., v.35, pp.863–888.

    Article  Google Scholar 

  • Brace W.F. (1964) Brittle fracture of rocks. In State of Stress in the Earth’s Crust. In: W.R. Judd (Ed.), Proceedings of the International Conference, Santa Monica, America. Elsevier, New York, pp.110–178.

    Google Scholar 

  • Brace, W.F., Paulding, B.W. and Scholz, C. (1966) Dilatancy in the fracture of crystalline rocks. Jour. Geophys. Res., v.71, pp.3939–3953.

    Article  Google Scholar 

  • Cai, M., Kaiser, P.K., Tasaka, Y., Maejima, T., Morioka, H. and Minami, M. (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. Jour. Rock Mech. Min. Sci., v.41, pp.677–680.

    Google Scholar 

  • Chatterjee, R. and Mukhopadhyay, M. (2002) Petrophysical and geomechanical properties of rocks from the oilfields of the Krishna-Godavari and Cauvery Basins, India. Bull. Eng. Geol. Env., v.61, pp.169–178.

    Article  Google Scholar 

  • Chatterjee, T.K., Chatterjee, R. and Singh, S.K. (2005) Classification of black decorative stones from Warangal District, Andhra Pradesh, India. Bull. Eng. Geol. Env., v.64, pp.167–173.

    Article  Google Scholar 

  • Chen, R., Yao, X. X. and Xie, H.S. (1979) Studies of the fracture of gabbro. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.16, pp.187–193.

    Article  Google Scholar 

  • Dearman, W.R., Baynes, E.J. and Irfan, T.Y. (1978) Engineering grading of weathered granite. Engg. Geol., v.12, pp.345–374.

    Article  Google Scholar 

  • Dunn, D.E., Lafountain, L.J. and Jackson, R.E., (1973) Porosity dependence and mechanism of brittle fracture in sandstones. Jour. Geophys. Res., v.78, pp.2403–2417.

    Article  Google Scholar 

  • Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S. (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. Jour., v.35, pp.222–233.

    Article  Google Scholar 

  • Einstein, H.H. and Dershowitz, W.S. (1990) Tensile and shear fracturing in predominantly compressive stress fields- a review. Engg. Geol., v.29, pp.149–172.

    Article  Google Scholar 

  • Goodman, R.E. (1989) Introduction to Rock Mechanics, 2nd ed. John Wiley & Sons, New York, pp.562.

    Google Scholar 

  • Gupta, A.S. and Rao, K.S. (1998) Index properties of weathered rocks: inter-relationships and applicability. Bull. Eng. Geol. Env., v.57, pp.161–172.

    Article  Google Scholar 

  • Hallbauer, D.K., Wagner, H. and Cook, N.G.W. (1973) Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.10, pp.713–726.

    Article  Google Scholar 

  • Hardy, H.R., Jr. (1977) Emergence of acoustic emission/ microseismic activity as a tool in geomechanics: Proceedings of the 1st Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, 1975, University Park, Pa., H.R. Hardy and L.W. Leighton, (Eds.). Trans Tech Publications, Clausthal, Germany, pp. 3–31.

  • Henry, J.P., Paquet, J. and Tancrez, J.P. (1977) Experimental study of crack propagation in calcite rocks. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.30, pp.925–928.

    Google Scholar 

  • Huang, J.F., Wang, Z.Y. and Zhao, Y.H. (1993) The development of rock fracture from microfracturing to main fracture formation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., v.30, pp.925–928.

    Article  Google Scholar 

  • ISRM (1979) Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int. J. Rock Mech. Mining Sci. & Geomech. Abstr., v.16, pp.141–156.

    Google Scholar 

  • Kahraman, S., Gunaydin, O. and Fener, M. (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int. Jour. Rock Mech. Mining Sci., v.42, pp.584–589.

    Article  Google Scholar 

  • Kranz, R.L. (1983) Microcracks in rocks: a review. Tectonophysics, v.100, pp.449–480.

    Article  Google Scholar 

  • Kumar, S., Rinol, V. and Pal, A.B. (2004) Field Evidence of Magma Mixing from Microgranular Enclaves Hosted in Palaeoproterozoic Malanjkhand Granitoids, Central India. Gondwana Res., v.7, pp. 539–548.

    Article  Google Scholar 

  • Lajtai, E.Z. and Lajtai, V.N. (1974) The evolution of brittle fracture in rocks. Jour. Geol. Soc. London, v.130, pp.1–18.

    Article  Google Scholar 

  • Lau, J.S.O. and Chandler, N.A. (2004) Innovative laboratory testing. Int. J. Rock Mech. Mining Sci., v.41, pp.1427–1445.

    Article  Google Scholar 

  • Li, L., Lee, P.K.K., Tsui, Y., Tham, L.G. and Tang, C.A. (2003) Failure process of granite. Int. Jour. Geomeh., v.3, pp.84–98.

    Article  Google Scholar 

  • Logan, J.M. (1987) Porosity and brittle-ductile transition in sedimentary rocks. In Banavar JR, Koplik J, Winkler KW (eds) physics and chemistry of porous media II, AIP conference proceedings, Amer. Inst. Phys., New York, pp. 229–242.

    Google Scholar 

  • Lumb, P. (1983) Engineering properties of fresh and decomposed igneous rocks from Hong Kong. Eng. Geol., v.19, pp.81–94.

    Article  Google Scholar 

  • Martin, C.D. (1993) The strength of massive Lac du granite around underground openings. PhD thesis, University of Manitoba.

    Google Scholar 

  • Martin, C.D. and Chandler, N.A. (1994) The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., v.31, pp.643–659.

    Article  Google Scholar 

  • Mishra, D.A. and Basu, A. (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Engg. Geol., v.160, pp.54–68.

    Article  Google Scholar 

  • Nasseri, M.H.B., Mohanty, B. and Robin, P.Y.F. (2005) Characterization of microstructures and fracture toughness in five granitic rocks. Int. Jour. Rock Mech. Min. Sci., v.42, pp.450–460.

    Article  Google Scholar 

  • Nicksiar, M. and Martin, C.D. (2012) Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech. and Rock Engg., v.45, pp.607–617.

    Article  Google Scholar 

  • Nicksiar, M. and Martin, C.D. (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Engg. Geol., v.154, pp.64–76.

    Article  Google Scholar 

  • Nolen-Hoeksema, R.C. and Gordon, R.B. (1987) Optical detection of crack patterns in the opening-mode fracture of marble. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.24, pp.135–144.

    Article  Google Scholar 

  • Palchik, V. (1999) Influence of porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones. Rock Mech. and Rock Engg., v.32, pp.303–309.

    Article  Google Scholar 

  • Palchik, V. (2013) Is there link between the type of the volumetric strain curve and elastic constants, porosity, stress and strain characteristics? Rock Mech. and Rock Engg., v.46, pp.315–326.

    Article  Google Scholar 

  • Palchik, V. and Hatzor, Y.H. (2000) Correlation between mechanical strength and microstructural parameters of dolomites and limestones in the Judea group. Israel. Israel Jour. Earth Sci., v.49, pp.65–79.

    Article  Google Scholar 

  • Palchik, V. and Hatzor, Y.H. (2002) Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Engg. Geol., v.63, pp.233–245.

    Article  Google Scholar 

  • Panigrahi, M.K., Bream, B.R., Misra, K.C. and Naik, R.K. (2004) Age of granitic activity associated with copper-molybdenum mineralization at Malanjkhand, Central India. Mineralium Deposita, v.39, pp.670–677.

    Article  Google Scholar 

  • Scholz, C. (1968) Experimental study of the fracturing process in brittle rock. Jour. Geophys. Res., v.73, pp.1447–1454.

    Article  Google Scholar 

  • Schultz, R.A. and Li, Q. (1995) Uniaxial strength testing of nonwelded Calico Hills tuff, Yucca Mountain, Nevada. Engg. Geol., v.40, pp.287–299.

    Google Scholar 

  • Scott, T.E. and Nielsen, K.C. (1991) The Effect of Porosity on the Brittle-Ductile Transition in Sandstones. Jour. Geophys. Res., v.96, pp.405–414.

    Article  Google Scholar 

  • Swan, G. (1975) The observation of cracks propagating in rock plates. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.12, pp.329–334.

    Article  Google Scholar 

  • Tugrul, A. and Zarif, I.H. (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engg. Geol., v.51, pp.303–317.

    Article  Google Scholar 

  • Verma, A.K., Saini, M.S., Singh, T.N. and Dutt, A. (2011) Effect of excavation stages on stress and pore pressure changes for an underground nuclear repository. Arab. Jour. Geosci., DOI 10.1007/s12517-011-0382-8.

    Google Scholar 

  • Vernik, L., Bruno, M. and Bovberg, C. (1993) Empirical relations between compressive strength and porosity of siliclastic rocks. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v.30, pp.677–680.

    Article  Google Scholar 

  • Vutukuri, V.S., Lama, R.D. and Saluja, S.S. (1974) Handbook on mechanical properties of rocks. Trans. Tech. Publ., Clausthal, pp.280.

    Google Scholar 

  • Wawersik, W.R. and Brace, W.F. (1971) Post-failure behavior of a granite and diabase. Rock Mech. Rock Eng., v.3, pp.61–85.

    Article  Google Scholar 

  • Yilmaz, I. and Yuksek, G. (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int. J. Rock Mech. Mining Sci., v.46, pp.803–810.

    Article  Google Scholar 

  • Zhang, X-P. and Wong, L.N.Y. (2013) Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech. Rock Eng., v.46, pp.1001–1021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Mishra, D.A. A method for estimating crack-initiation stress of rock materials by porosity. J Geol Soc India 84, 397–405 (2014). https://doi.org/10.1007/s12594-014-0145-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0145-8

Keywords

Navigation