Skip to main content
Log in

An alternate perspective on the opening and closing of the intracratonic Purana basins in peninsular India

  • Published:
Journal of the Geological Society of India

Abstract

Purana basins in India are Proterozoic in age, filled with mostly marine, deltaic, and fluvial sediments, with some alluvial fan deposits in the basin margins. The basin fill is largely undeformed and unmetamorphosed, and the basins occur in many shallow (<5 km), large and small depressions in the Archean-Paleoproterozoic cratons in peninsular India. An understanding of the reasons for the opening and closing of these intracratonic basins is elusive, far more so than that of the better-studied Phanerozoic intracratonic basins in the world. On the basis of meager, but robust new data, published in this century on the Purana basins and their host cratons’ lithostratigraphy, paleomagnetism, seismic images, geochronology, and paleontology, we propose a scenario of their opening and closing related to the assembly and disassembly of the supercontinents Kenorland, Columbia, and Rodinia.

The Marwar and the Bundelkhand cratons occur in the western and northern Indian blocks, respectively. The southern Indian Block consists of the Singhbhum, Bastar, Eastern Dharwar, and Western Dharwar cratons; these had amalgamated by ca. 2.5 Ga, but split and re-amalgamated along the western margin of the Bastar craton ca. 1.6 Ga. These three blocks, and East Antarctica, were assembled ca. 1000 Ma along the Aravalli-Delhi Fold Belt, Central Indian Tectonic Zone, and the Eastern Ghats Mobile Belt, as part of Rodinia.

There are three sets of Purana basins. The oldest set (Papaghni-Chitravati; Kaladgi-Badami; Lower Vindhyan; Gwalior-Bijawar-Sonrai) opened diachronously after 2.0 Ga and closed by 1.55 Ga. Others (Chhattisgarh; Indravati; Khariar;Ampani;Albaka; Mallampalli; Kurnool; Bhima; etc.) opened after the 1.6 Ga amalgamation event in the southern Indian block, and closed shortly after the 1000 Ma collision of East Antarctica with India. In the northern Indian block, the upper Vindhyan basin likely opened after 1.4 Ga. Sedimentation lingered in some of these basins for some time after 1000 Ma but ceased at the latest by 900 Ma. The Marwar basin in the western Indian block opened ca. 750 Ma, after the emplacement of the Malani Igneous Suite, and sedimentation ceased by 520 Ma, before the Cambrian Explosion.

We propose that the three crustal blocks were largely separate between ca. 2.0 and 1.0 Ga but may have collided with and separated from each other from time to time. Minor fracturing in the cratons, entirely within the crust, caused them to have uneven topography. The resulting depressions were filled with sediments as sea level rose; they sagged under the sediment load and as a result of far-field effects of packing and unpacking of large landmasses (Kenorland, Columbia, and Rodinia). Ensuing dynamic topography and sea level fluctuations gave rise to the opening and closing of the Purana basins and their sediment fills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Absar, N., Raza, M., Roy, M., Naqvi, S.M. and Roy, A.K. (2009) Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Res., v.168, pp.313–329.

    Google Scholar 

  • Absar, N. (2013) Discussion: “Geochronological (Rb-Sr and Sm-Nd) studies on intrusive gabbros and dolerite dykes from parts of northern and central Indian cratons: implications for the age of onset of sedimentation in Bijawar and Chattisgarh basins and uranium mineralisation by Pandey, U. K., Sastry, D. V. L. N, Pandey, B. K., Roy, M., Rawat, T. P. S., Ranjan, R. and Shrivastava V. K.”. Jour. Geol. Soc. India, v.81, pp.438–442.

    Article  Google Scholar 

  • Acharyya, S.K. (2003a) A plate tectonic model for Proterozoic crustal evolution of Central Indian tectonic zone. Gondwana Geol. Mag., v.7 (Special Volume 7), pp.9–31.

    Google Scholar 

  • Acharyya, S.K. (2003b) The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Res., v.6, pp.197–214.

    Article  Google Scholar 

  • Allen, P.A. and Allen, J. R. (2005) Basin Analysis. Blackwell. 549 p.

    Google Scholar 

  • Allen, P.A. and Armitage, J.J. (2012) Cratonic basins. In: Busby, Cathy and Pérez Azor, Antonio (Eds.), Tectonics of Sedimentary Basins: Recent Advances.Wiley-Blackwell, pp.602–620.

    Chapter  Google Scholar 

  • Amarasinghe, U., Chaudhuri, A., Collins, A.S., Deb, G. and Patranabis-Deb, S. (2014) Evolving provenance in the Proterozoic Pranhita-Godavari Basin, India. Geoscience Frontiers, (in press; http://dx.doi.org/10.1016/ j.gsf.2014.03.009)

    Google Scholar 

  • Anand, M., Gibson, S.A., Subbarao, K.V., Kelley, S.P. and Dickin, A.P. (2003) Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah Basin, southern India. Jour. Petrol., v.44, pp.2139–2171.

    Article  Google Scholar 

  • Anbarasu, K. (2001) Facies variation and depositional environment of Mesoproterozoic Vindhyan sediments of Chitrakut area, central India. Jour. Geol. Soc. India, v.58, pp.341–350.

    Google Scholar 

  • Artemieva, I.M. (2007) Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics. Global Planet. Change, v.58, pp.411–434.

    Article  Google Scholar 

  • Auden, J.B. (1933) Vindhyan sedimentation in the Son Valley, Mirzapur District. Mem. Geol. Surv. India, v.62, pp.141–250.

    Google Scholar 

  • Babu, E.V.S.S.K. (2011) Provenance for Cuddapah Basin Sediments: Constraints from U-Pb-Hf-O Isotopic Composition of Zircons from the Ramallakota Conglomerate, Kurnool Subbasin, South India (Abstract). IAGR Conference Series (8th International Symposium on Gondwana to Asia “Supercontinent Dynamics: India and Gondwana”), v.12, pp.37–38.

    Google Scholar 

  • Baird, D.J., Knapp, J.H., Steer, D.N., Brown, L.D. and Nelson, K.D. (1995) Upper-mantle reflectivity beneath the Williston basin, phase-change Moho, and the origin of intracratonic basins. Geology, v.23, pp.431–434.

    Article  Google Scholar 

  • Bandopadhyay, P.C. and Sengupta, S. (2004) The Paleoproterozoic supracrustal Kolhan Group in Singhbhum Craton, India and the Indo-African supercontinent. Gondwana Res., v.7, pp.1228–1235.

    Article  Google Scholar 

  • Banerjee, S. and Jeevankumar, S. (2005) Microbially originated wrinkle structures on sandstone and their stratigraphic context. Sedimentary Geol., v.176, pp.211–224.

    Article  Google Scholar 

  • Banerjee, S., Sarkar, S., Eriksson, P.G. and Samanta, P. (2010) Microbially related structures in siliciclastic sediment resembling Ediacaran fossils: examples from India, ancient and modern. In: J. Sechback and A. Oren (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Berlin, Springer Verlag, pp.111–129.

    Google Scholar 

  • Bansal, A.R. and Dimri, V.P. (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure Appld. Geophys., v.158, pp.799–812.

    Article  Google Scholar 

  • Basu, A. and Bickford, M.E. (2014) Contributions of zircon UPb geochronology to understanding the volcanic and sedimentary history of some Purana basins, India. Jour. Asian Earth Sci., v.91, pp.252–262.

    Article  Google Scholar 

  • Basu, A., Patranabis-Deb, S., Schieber, J. and Dhang, P.C. (2008) Stratigraphic position of the ~1000 Ma Sukhda Tuff (Chhattisgarh Supergroup, India) and the 500 Ma question. Precambrian Res., v.167, pp.383–388.

    Article  Google Scholar 

  • Belica, M.E., Piispa, E.J., Meert, J.G., Pesonen, L.J., Plado, J., Pandit, M.K., Kamenov, G.D. and Celestino, M. (2014) Paleoproterozoic mafic dyke swarms from the Dharwar craton: paleomagnetic poles for India from 2.37 to 1.88 Ga and rethinking the Columbia supercontinent. Precambrian Res., v.244, pp.100–122.

    Article  Google Scholar 

  • Bhandari, A., Chandra Pant, N., Bhowmik, S.K. and Goswami, S. (2011) 1.6 Ga ultrahigh-temperature granulite metamorphism in the Central Indian Tectonic Zone: insights from metamorphic reaction history, geothermobarometry and monazite chemical ages. Geol. Jour., v.46, pp.198–216.

    Google Scholar 

  • Bhattacharji, S. and Singh, R. N. (1984) Thermo-mechanical structure of the southern part of the Indian Shield and its relevance to Precambrian basin evolution. Tectonophysics, v.105, pp.103–120.

    Article  Google Scholar 

  • Bhowmik, S.K., Chattopadhyay, A., Gupta, S. and Dasgupta, S. (2012a) Proterozoic Tectonics: An Indian Perspective. Jour. Earth. Syst. Sci., v.78, pp.385–391.

    Google Scholar 

  • Bhowmik, S.K., Wilde, S.A., Bhandari, A., Pal, T. and Pant, N.C. (2012b) Growth of the Greater Indian Landmass and its assembly in Rodinia: Geochronological evidence from the Central Indian Tectonic Zone. Gondwana Res., v.22, pp.54–72.

    Article  Google Scholar 

  • Bhowmik, S.K. and Dasgupta, S. (2012c) Tectonothermal evolution of the Banded Gneissic Complex in central Rajasthan, NW India: Present status and correlation: Orogenic Belts in Central Asia: Correlations and connections. Jour. Asian Earth Sci., v.49, pp.339–348.

    Article  Google Scholar 

  • Bhushan, S.K. (2000) Malani Rhyolites — A Review. Gondwana Res., v.3, pp.65–77.

    Article  Google Scholar 

  • Bickford, M.E., Basu, A., Patranabis-Deb, S., Dhang, P.C. and Schieber, J. (2011a) Depositional history of the Chhattisgarh basin, central India: Constraints from new SHRIMP zircon ages. Jour. Geol., v.119, pp.33–50.

    Article  Google Scholar 

  • Bickford, M.E., Basu, A., Mukherjee, A., Hietpas, J., Schieber, J., Patranabis-Deb, S., Ray, R.K., Guhey, R., Bhattacharya, P. and Dhang, P.C. (2011b) New U-Pb SHRIMP zircon ages of the Dhamda Tuff in the Mesoproterozoic Chhattisgarh basin, Peninsular India: Stratigraphic implications and significance of a 1-Ga thermal-magmatic event. Jour. Geol., v.119, pp.535–548.

    Article  Google Scholar 

  • Bickford, M.E., Basu, A., Kamenov, G.D., Mueller, P.A., Patranabis-Deb, S. and Mukherjee, A. (2014) Petrogenesis of 1000 Ma felsic tuffs, Chhattisgarh and Indravati basins, Bastar craton, India: Geochemical and Hf isotope constraints. Jour. Geol., v.122, pp.43–54.

    Article  Google Scholar 

  • Bond, G.C. and Kominz, M.A. (1991) Disentangling Middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America. JGR, v.96, pp.6619–6639.

    Article  Google Scholar 

  • Bose, S., Dunkley, D.J., Dasgupta, S., Das, K. and Arima, M. (2011) India-Antarctica-Australia-Laurentia connection in the Paleoproterozoic? Mesoproterozoic revisited: Evidence from new zircon U-Pb and monazite chemical age data from theEastern Ghats Belt, India. Bull. Geol. Soc. America, v.123, pp.2031–2049.

    Article  Google Scholar 

  • Boukhalfa, K., Amorosi, A., Soussi, M. and Ismail-LattrÂChe, K. (2014) Glauconitic-rich strata from Oligo-Miocene shallowmarine siliciclastic deposits of the northern margin of Africa (Tunisia): geochemical approach for basin analysis. Arabian Jour. Geosci., On-line Feb, 2014, pp.1–12. (http://dx.doi.org/ 10.1007/s12517-014-1288-z)

    Google Scholar 

  • Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P. (1993) Calibrating rates of early Cambrian evolution. Science, v.261, pp.1293–1298.

    Article  Google Scholar 

  • Brasier, M.D. (1992) Background to the Cambrian Explosion. Jour. Geol. Soc. (London), v.149, pp.585–587.

    Article  Google Scholar 

  • Burgess, P.M. (2008) Phanerozoic Evolution of the Sedimentary Cover of the North American Craton. In: Andrew D. Miall (Ed.), Sedimentary Basins of the World: The Sedimentary Basins of the United States and Canada. v.5, pp.31–63.

    Google Scholar 

  • Chakrabarti, A. (1990) Traces and dubiotraces: examples from the so-called Late Proterozoic siliciclastic rocks of the Vindhyan Supergroup around Maihar, India. Precambrian Res., v.47, pp.141–153.

    Article  Google Scholar 

  • Chakrabarti, A. (2001) Are meandering structures found in Proterozoic rocks of different ages of the Vindhyan supergroup of central India biogenic?: A scrutiny. Ichnos, v.8, pp.131–139.

    Article  Google Scholar 

  • Chakrabarti, G. and Shome, D. (2010) Interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time: an example from basal Gulcheru Formation, Cuddapah Basin, India. Sedimentary Geol., v.226, pp.22–28.

    Article  Google Scholar 

  • Chakrabarti, R., Basu, A.R. and Chakrabarti, A. (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Res., v.159, pp.260–274.

    Article  Google Scholar 

  • Chakraborty, C. (2006) Proterozoic intracontinental basIn: the Vindhyan example. Jour. Earth. Syst. Sci., v.115, pp.3–22.

    Article  Google Scholar 

  • Chakraborty, P.P. (2006) Outcrop signatures of relative sea level fall on a siliciclastic shelf: Examples from the Rewa Group of Proterozoic Vindhyan Basin. Jour. Earth. Syst. Sci., v.115, pp.23–36.

    Article  Google Scholar 

  • Chakraborty, P.P., Dey, S. and Mohanty, S.P. (2010) Proterozoic platform sequences of peninsular India: Implications towards basin evolution and supercontinent assembly. Jour. Asian Earth Sci., v.39, pp.589–607.

    Article  Google Scholar 

  • Chakraborty, P.P. and Paul, P. (2014) Depositional character of a dry-climate alluvial fan system from Palaeoproterozoic rift setting using facies architecture and palaeohydraulics: Example from the Par Formation, Gwalior Group, central India. Jour. Asian Earth Sci., v.91, pp.298–315.

    Article  Google Scholar 

  • Chakraborty, P.P. and Paul, S. (2008) Facies, paleogeography and depositional sequence analysis in a Proterozoic foreland: Chattisgarh Basin, central India. 33rd International Geological Congress (abstracts), v.33, SES-01.

    Google Scholar 

  • Chakraborty, T. (1994) Stratigraphy of the late Proterozoic Sullavai Group, Pranhita-Godavari Valley, Andhra Pradesh. Indian Jour. Geol., v.66, pp.124–147.

    Google Scholar 

  • Chalapathi Rao, N.V., Anand, M., Dongre, A. and Osborne, I. (2010) Carbonate xenoliths hosted by the Mesoproterozoic Siddanpalli Kimberlite Cluster (Eastern Dharwar craton): implications for the geodynamic evolution of southern India and its diamond and uranium metallogenesis. Int. Jour. Earth Sci., v.99, pp.1791–1804.

    Article  Google Scholar 

  • Chandrakala, K., Mall, D.M., Sarkar, D. and Pandey, O.P. (2013) Seismic imaging of the Proterozoic Cuddapah basin, south India and regional geodynamics. Precambrian Res., v.231, pp.277–289.

    Article  Google Scholar 

  • Chatterjee, N. and Ghose, N.C. (2011) Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gondwana Res., v.20, pp.362–379.

    Article  Google Scholar 

  • Chaudhuri, A.K. (2003) Stratigraphy and palaeogeography of the Godavari Supergroup in the south-central Pranhita-Godavari Valley, south India: Geology of the Pranhita-Godavari Valley, India. Jour. Asian Earth Sci., v.21, pp.595–611.

    Article  Google Scholar 

  • Chaudhuri, A.K., Dasgupta, S., Bandyopadhyay, G., Sarkar, S., Bandyopadhyay, P.C. and Gopalan, K. (1989) Stratigraphy of the Penganga Group around Adilabad, Andhra Pradesh. Jour. Geol. Soc. India, v.34, pp.291–302.

    Google Scholar 

  • Chaudhuri, A.K., Deb, G.K., Patranabis-Deb, S. and Sarkar, S. (2012) Paleogeographic and tectonic evolution of the Pranhita- Godavari Valley, Central India: a stratigraphic perspective. American Jour. Sci., v.312, pp.766–815.

    Article  Google Scholar 

  • Cloetingh, S. and Burov, E. (2011) Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Res., v.23, pp.257–290.

    Article  Google Scholar 

  • Conrad, J.E., Hein, J.R., Chaudhuri, A.K., Patranabis-Deb, S., Mukhopadhyay, J., Deb, G.K. and Beukes, N.J. (2011) Constraints on the development of central India Proterozoic basins from 40Ar/39Ar analysis of authigenic glauconitic minerals. Bull. Geol. Soc. America, v.123, pp.158–167.

    Article  Google Scholar 

  • Conway-Morris, S., Jensen, S. and Butterfield, N.J. (1998) Fossil discoveries in India: Continued. Science, v.282, pp.1265.

    Article  Google Scholar 

  • Das, D.P., Kundu, A., Das, N., Dutta, D.R., Kumaran, K., Ramamurthy, S., Thanavelu, C. and Rajaiya, V. (1992) Lithostratigraphy and sedimentation of Chhattisgarh Basin. Indian Minerals, v.46, pp.271–288.

    Google Scholar 

  • Das, K., Yokoyama, K., Chakraborty, P.P. and Sarkar, A. (2009) Basal tuffs and contemporaneity of the Chattisgarh and Khariar Basins based on new dates and geochemistry. Jour. Geol., v.117, pp.88–102.

    Article  Google Scholar 

  • Das, K., Bose, S., Karmakar, S., Dunkley, D.J. and Dasgupta, S. (2011) Multiple tectonometamorphic imprints in the lower crust: first evidence of ca. 950?Ma (zircon U-Pb SHRIMP) compressional reworking of UHT aluminous granulites from the Eastern Ghats Belt, India. Geol. Jour., v.46, pp.217–239.

    Google Scholar 

  • Dasgupta, S. and Sengupta, P. (2003) Indo-Antarctic correlation: a perspective from the Eastern Ghats granulite belt, India. In: M. Yoshida, B.F. Windley and S. Dasgupta, (Eds.), Proterozoic East Gondwana: supercontinent assembly and breakup. Spec. Pub. Geol. Soc., v.206, pp.131–143.

    Google Scholar 

  • Davis, J.K., Meert, J.G. and Pandit, M.K. (2014) Paleomagnetic analysis of the Marwar Supergroup, Rajasthan, India and proposed interbasinal correlations. Jour. Asian Earth Sci., v.91, pp.339–351.

    Article  Google Scholar 

  • De, C. (2006) Ediacara fossil assemblage in the Upper Vindhyans of Central India and its significance. Jour. Asian Earth Sci., v.27, pp.660–683.

    Article  Google Scholar 

  • Deb, G.K. (2003) Deformation pattern and evolution of the structures in the Penganga Group, the Pranhita-Godavari Valley, India: probable effects of Grenvillian movement on a Mesoproterozoic basIn: Geology of the Pranhita-Godavari Valley, India. Jour. Asian Earth Sci., v.21, pp.567–577.

    Article  Google Scholar 

  • Deb, G.K. (2013) Discussion of Saha et al. (2012, Precambrian Res.) “Tectono-magmatic evolution of the Mesoproterozoic Singhora basin, central India: Evidence for compressional tectonics from structural data, AMS study and geochemistry of basic rocks”. Precambrian Res., v.230, pp.248–257.

    Article  Google Scholar 

  • Deb, M. (2014) Precambrian geodynamics and metallogeny of the Indian shield. Ore Geol. Rev., v.57, pp.1–28.

    Article  Google Scholar 

  • Dhang, P.C. and Patranabis-Deb, S. (2012) Lithostratigraphy of the basal part of the Chattisgarh Supergroup around Singhora- Saraipali area and its tectonic implication. In: R.P. Tiwari (Ed.), Cenozoic Tectonics, Seismology, and Palaeobiology of the Eastern Himalayas and Indo-Myanmar Range. Mem. Geol. Soc. India, No.77, pp.493–515.

    Google Scholar 

  • Dharma Rao, C.V., Santosh, M., Kim, S.W. and Li, S. (2013) Arc magmatism in the Delhi Fold Belt: SHRIMP U?Pb zircon ages of granitoids and implications for Neoproterozoic convergent margin tectonics in NW India. Jour. Asian Earth Sci., v.78, pp.83–99.

    Article  Google Scholar 

  • Dobmeier, C.J. and Raith, M.M. (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In: M. Yoshida, B.F. Windley, and S. Dasgupta (Eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup), Spec. Pub. Geol. Soc., v.206, pp.145–168.

    Google Scholar 

  • Dongre, A., Chalapathi Rao, N.V. and Kamde, G. (2008) Limestone xenolith in Siddanpalli Kimberlite, Gadwal Granite- Greenstone Terrain, Eastern Dharwar Craton, Southern India: Remnant of Proterozoic platformal cover sequence of Bhima/ Kurnool age? Jour. Geol., v.116, pp.184–191.

    Article  Google Scholar 

  • Eriksson, P.G., Martins-Neto, M.A., Nelson, D.R., Aspler, L.B., Chiarenzelli, J.R., Catuneanu, O., Sarkar, S., Altermann, W. and Rautenbach, C.J.D.W. (2001) An introduction to Precambrian basins: their characteristics and genesis. Sedimentary Geol., v.141–142, pp.1–35.

    Article  Google Scholar 

  • Ernst, R.E. and Srivastava, R.K. (2008) India’s place in the Proterozoic world: Constraints from the Large Igneous Province (LIP) Record. In: R.K. Srivastava, Ch. Sivaji and N.V. Chalapathi Rao, (Eds.), Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publ., pp.41–56.

    Google Scholar 

  • Ernst, R.E., Bleeker, W., Söderlund, U. and Kerr, A.C. (2013) Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, v.174, pp.1–14.

    Article  Google Scholar 

  • French, J.E. and Heaman, L.M. (2010) Precise U/Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar Craton, India: implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Res., v.183, pp.416–441.

    Article  Google Scholar 

  • French, J.E., Heaman, L.M., Chacko, T. and Srivastava, R.K. (2008) 1891-1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: A newly recognized large igneous province. Precambrian Res., v.160, pp.308–322.

    Article  Google Scholar 

  • Gopalan, K., Kumar, A., Kumar, S. and Vijayagopal, B. (2013) Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb-Pb isochron ages of its carbonate components. Precambrian Res., v.233, pp.108–117.

    Article  Google Scholar 

  • Gradstein, F.M., Ogg, J.G. and Smith, A.G. (2004) A Geologic Time Scale 2004. Cambridge, 589 p.

    Google Scholar 

  • Gregory, L.C., Meert, J.G., Bingen, B., Pandit, M.K. and Torsvik, T.H. (2009) Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Res., v.170, pp.13–26.

    Article  Google Scholar 

  • GSI (2005a) Geological and Mineral Map of Chhattisgarh (1:1,000,000). Geol. Surv. India.

    Google Scholar 

  • GSI (2005b) District Resources Map-Janjgir District, Chhattisgarh (1:250,000). Geol. Surv. India.

    Google Scholar 

  • Gurnis, M. (1990) Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, v.344, pp.754–756.

    Article  Google Scholar 

  • Hager, B.H., Clayton, R.W., Richards, M.A., Comer, R.P. and Dziewonski, A.M. (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, v.313, pp.541–545.

    Article  Google Scholar 

  • Haldar, D. and Ghosh, R.N. (2000) Eruption of Bijawar lava: an example of Precambrian volcanicity under stable cratonic condition. Spec. Pub. Geol. Surv. India, v.57, pp.151–170.

    Google Scholar 

  • Halls, H.C. and Davis, D.W. (2004) Paleomagnetism and U-Pb geochronology of the 2.17 Ga Biscotasing dyke swarm, Ontario, Canada: evidence for vertical-axis crustal rotation across the Kapuskasing Zone. Canadian Jour. Earth Sci., v.41, pp.255–269.

    Article  Google Scholar 

  • Haxby, W.F., Turcotte, D.L. and Bird, J.M. (1976) Thermal and mechanical evolution of the Michigan BasIn: Sedimentary basins of continental margins and cratons. Tectonophysics, v.36, pp.57–75.

    Article  Google Scholar 

  • Heine, C., MÜLler, R.D., Steinberger, B. and Torsvik, T.H. (2008) Subsidence in intracontinental basins due to dynamic topography. IN: Recent Advances in Computational Geodynamics: Theory, Numerics and Applications. Physics Earth Planet. Interiors, v.171, pp.252–264.

    Article  Google Scholar 

  • Hofmann, H.J. (2005) Palaeoproterozoic dubiofossils from India revisited- Vindhyan triploblastic animal burrows or pseudofossils? Jour. Paleo. Soc. India, v.50, pp.113–120.

    Google Scholar 

  • Holland, T.H. (1913) Indian Geological Terminology. Mem. Geol. Surv. India, v.6, 184 p.

    Google Scholar 

  • Holmes, A. (1955) Dating the Precambrian of peninsular India. Proc. Geol. Assoc. Canada, v.1, pp.81–106.

    Google Scholar 

  • Holt, P.J., Allen, M.B., van Hunen, J. and Bjornseth, H.M. (2010) Lithospheric cooling and thickening as a basin forming mechanism. Tectonophysics, v.495, pp.184–194.

    Article  Google Scholar 

  • Howell, P.D. and van der Pluijm, B.A. (1999) Structural sequences and styles of subsidence in the Michigan basin. Bull. Geol. Soc. America, v.111, pp.974–991.

    Article  Google Scholar 

  • Ingersoll, R.V. (2012) Tectonics of sedimentary basins, with revised nomenclature. In: C. Busby and Pérez Azor, Antonio (Eds.). Tectonics of Sedimentary Basins: Recent Advances. Wiley-Blackwell, pp.3–43.

    Google Scholar 

  • Jayaprakash, A.V. (2007) Purana Basins of Karnataka. Mem. Geol. Surv. India, v.129, pp.1–137.

    Google Scholar 

  • Johnson, C.L. and Ritts, B.D. (2012) Plate interior poly-phase basins. In: C. Busby and Pérez Azor, Antonio (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Wiley-Blackwell, pp.567–582.

    Google Scholar 

  • Joy, S., Jelsma, H.A., Preston, R.F. and Kota, S. (2012) Geology and diamond provenance of the Proterozoic Banganapalle conglomerates, Kurnool Group, India. In: R. Mazumder and D. Saha (Eds.). Palaeoproterozoic of India. Spec. Publ. Geol. Soc., v.365, pp.197–218.

    Article  Google Scholar 

  • Kaila, K.L., Murty, P.R.K., Rao, V.K. and Venkateswarlu, N. (1990) Deep Seismic sounding in the Godavari Graben and Godavari (coastal) Basin, India: Tectonophysics, v.173, pp.307–317.

    Google Scholar 

  • Kaila, K.L., Tewari, H.C., Roy Chowdhury, K., Rao, V.K., Sridhar, A.R., Mall, D.M. and Mooney, W.D. (1987) Crustal structure of the northern part of the Proterozoic Cuddapah Basin of India from deep seismic soundings and gravity data. Tectonophysics, v.140, pp.1–12.

    Article  Google Scholar 

  • Kaminski, E., and Jaupart, C. (2000) Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth Planet. Sci. Lett., v.178, pp.139–149.

    Article  Google Scholar 

  • Kay, M. (1951) North American Geosynclies. Mem. Geol. Soc. America, v.48, pp.1–132.

    Google Scholar 

  • King, W. (1872) On the Kadapah and Karnul Formations in the Madras Presidency. Mem. Geol. Surv. India, v.8, pp.1–291.

    Google Scholar 

  • Klein, G.Dev. (1987) Current aspects of basin analysis. Sedimentary Geol., v.50, pp.95–118.

    Article  Google Scholar 

  • Klein, G.Dev. (1995) Intracratonic Basins. In: Busby, Cathy J and Ingersoll, Raymond V. (Eds.) Tectonics of Sedimentary Basins. Blackwell, pp. 459–478.

    Google Scholar 

  • Klein G.DE.V., and Hsui, A.T. (1987) Origin of cratonic basins. Geology, v.15, pp.1094–1098.

    Article  Google Scholar 

  • Krishnan, M. S. (1968) Geology of India and Burma. Higginbothams. Madras, 536 p.

    Google Scholar 

  • Kulkarni, K.G., and Borkar, V.D. (2002) Trace Fossils and Pseudofossils from the Proterozoic Cuddapah Supergroup. Jour. Geol. Soc. India, v.59, pp.531–536.

    Google Scholar 

  • Kulkarni, K.G., and Borkar, V.D. (2004) Scrutiny of the Earliest Records of Biogenic Sedimentary Structures from the Proterozoic Rock Formations of the Indian Shield. Jour. Geol. Soc. India, v.63, pp.222–226.

    Google Scholar 

  • Kulkarni, K.G., Borkar, V.D., and Bhattacharjee, S. (2004) Restudy of type specimens of trace fossils from Vindhyan Supergroup of Chambal Valley. Gondwana Geol. Mag., v.19, pp.71–75.

    Google Scholar 

  • Kumar, S., and Ahmad, S. (2014) Microbially induced sedimentary structures (MISS) from the Ediacaran Jodhpur Sandstone, Marwar Supergroup, western Rajasthan. Jour. Asian Earth Sci., v.91, pp.352–361.

    Article  Google Scholar 

  • Kumar, S., and Pandey, S.K. (2010) Trace fossils from the Nagaur Sandstone, Marwar Supergroup, Dulmera area, Bikaner district, Rajasthan, India. Jour. Asian Earth Sci., v.38, pp.77–85.

    Google Scholar 

  • Kumar, S.N., Som, A., Raju, A.R., Sastry, I.V., Maithani, P.B., and Sen, D.B. (2007) Rhyolitic tuffs in Cherla Formation of eastern Pakhal Belt, District Khammam, Andhra Pradesh. Gondwana Geol. Mag., v.22, pp.59–62.

    Google Scholar 

  • Kumar, S., and Pandey, S.K. (2008) Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, central India. Jour. Paleo. Soc. India, v.53, pp.83–97.

    Google Scholar 

  • Lakshminarayana, G. (2002) Sedimentary facies and stratigraphic significance of Cumbum and Bairenkonda type sections of Nallamalai fold belt, Cuddapah Basin, Andhra Pradesh. Jour. Geol. Soc. India, v.59, pp.167–177.

    Google Scholar 

  • Lakshminarayana, G., Bhattacharjee, S., and Ramanaidu, K.V. (2001) Sedimentation and stratigraphic framework in the Cuddapah Basin. Sp. Pub. Geol. Surv. India, v.55, pp.31–57.

    Google Scholar 

  • Leelanandam, C., Burke, K., Ashwal, L.D., and Webb, S.J. (2006) Proterozoic mountain building in Peninsular India: an analysis based primarily on alkaline rock distribution. Geol. Mag., v.143, pp.195–212.

    Article  Google Scholar 

  • Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V. (2008) Assembly, configuration, and breakup history of Rodinia: a synthesis. Precambrian Res., v.160, pp.179–210.

    Article  Google Scholar 

  • Maithy, P. K. and Kumar, G. (2007) Biota in the terminal Proterozoic successions on the Indian subcontinent: a review. Vickers-Rich, Patricia and Komarower, Patricia. The Rise and Fall of the Ediacaran Biota. Sp. Pub. Geol. Soc., v.286, pp.315–330.

    Article  Google Scholar 

  • Majid, A., Ahmad, A.H.M., and Bhat, G.M. (2012) Facies controlled porosity evolution of the Neoproterozoic Upper Bhander Sandstone of Western India. Sp. Pub. Geol. Soc., v.366, pp.91–110.

    Article  Google Scholar 

  • Malone, S., Meert, J., Banerjee, D.M., Pandit, M., Tamrat, E., Kamenov, G.D., Pradhan, V., and Sohl, L.E. (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Res., v.164, pp.137–159.

    Article  Google Scholar 

  • Marshall, B. D. (1986) Potassium-calcium dating of glauconite from the Belt Supergroup, Montana AGU 1986 spring meeting. American Geophysical Union, 1986 spring meeting. EOS, Transactions, American Geophysical Union v.67, pp.400.

    Google Scholar 

  • Mcbride, J.H., Kolata, D.R., and Hildenbrand, T.G. (2003) Geophysical constraints on understanding the origin of the Illinois basin and its underlying crust. Tectonophysics, v.363, pp.45–78.

    Article  Google Scholar 

  • Mckenzie, N.R., Hughes, N.C., Myrow, P.M., Xiao, S., and Sharma, M. (2011) Correlation of Precambrian-Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet. Sci. Lett., v.312, pp.471–483.

    Article  Google Scholar 

  • Medlicott, H.B. and Blanford, W.T. (1879) A Manual of the Geology of India. Part I and Part II. Government of India. 817 p.

    Google Scholar 

  • Meert, J.G., Pandit, M.K., and Kamenov, G.D. (2013) Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India. Tectonophysics,(in press http://dx.doi.org/10.1016/j.tecto.2013.06.019)

    Google Scholar 

  • Miall, A.D. (2005) Testing for eustatic sea-level control in the Precambrian sedimentary record. Sedimentary Geol., v.176, pp.9–16.

    Article  Google Scholar 

  • Middleton, M.F. (1989) A model for the formation of intracratonic sag basins. Geophys. Jour. Internat., v.99, pp.665–676.

    Article  Google Scholar 

  • Mishra, D.C. (2011a) Long hiatus in Proterozoic sedimentation in India: Vindhyan, Cuddapah and Pakhal Basins- A plate tectonic model. Jour. Geol. Soc. India, v.77, pp.17–25.

    Article  Google Scholar 

  • Mishra, D.C. (2011b) A unified model of Neoarchean-Proterozoic convergence and rifting of Indian cratons: geophysical constraints. Internat. Jour. Geosci., v.2, pp.579–630.

    Google Scholar 

  • Mishra, D.C. and Ravi Kumar, M. (2014) Proterozoic orogenic belts and rifting of Indian cratons: Geophysical constraints. Geoscience Frontiers, v.5, pp.25–41.

    Article  Google Scholar 

  • Misra, S. (2006) Precambrian chronostratigraphic growth of Singhbhum-Orissa Craton, eastern Indian Shield: an alternative model. Jour. Geol. Soc. India, v.67, pp.356–378.

    Google Scholar 

  • Mohanty, S. (2011) Palaeoproterozoic assembly of the Napier Complex, southern India and western Australia: implications for the evolution of the Cuddapah basin. Gondwana Res., v.20, pp.344–361.

    Article  Google Scholar 

  • Mukherjee, A., Bickford, M.E., Hietpas, J., Schieber, J. and Basu, A. (2012) Implications of a newly dated ca. 1000 Ma rhyolitic tuff in the Indravati basin, Bastar craton, India. Jour. Geol., v.120, pp.477–485.

    Article  Google Scholar 

  • Mukherjee, A., Ray, R.K., Tewari, D., Ingle, V.K., Sahoo, B.K. and Khan, M.W.Y. (2014) Revisiting the stratigraphy of the Mesoproterozoic Chhattisgarh Supergroup, Bastar craton, India based on subsurface lithoinformation. Jour. Earth Systems Sci., v.123, pp.617–632.

    Article  Google Scholar 

  • Mukherjee, D., Ray, S., Chandra, S., Pal, S. and Bandyopadhyay, S. (2012) Upper Gondwana succession of the Rewa Basin, India: Understanding the interrelationship of lithologic and stratigraphic variables. Jour. Geol. Soc. India, v.79, pp.563–575.

    Article  Google Scholar 

  • Mukhopadhyay, D. and Basak, K. (2009) The Eastern Ghats Belt: a polycyclic granulite terrain. Jour. Geol. Soc. India, v.73, pp.489–518.

    Article  Google Scholar 

  • Mukhopadhyay, J., Ghosh, G., Nandi, A.K. and Chaudhuri, A.K. (2006) Depositional setting of the Kolhan Group: its implications for the development of a Meso to Neoproterozoic deep-water basin on the South Indian craton. South African Jour. Geol., v.109, pp.183–192.

    Article  Google Scholar 

  • Murty, A.S.N., Tewari, H.C. and Reddy, P.R. (2004) 2-D Crustal Velocity Structure Along Hirapur-Mandla Profile in Central India: An Update. Pure Appld. Geophys., v.161, pp.165–184.

    Article  Google Scholar 

  • Naqvi, S.M. (2005) Geology and the Evolution of the Indian Plate. New Delhi, Capital, 450p.

    Google Scholar 

  • Nunn, J.A. and Sleep, N.H. (1984) Thermal contraction and flexure of intracratonal basins: a three-dimensional study of the Michigan basin. Geophys. Jour. Internat., v.76, pp.587–635.

    Article  Google Scholar 

  • Pandey, D.K., Uchman, A., Kumar, V. and Shekhawat, R.S. (2014) Cambrian trace fossils of the Cruziana ichnofacies from the Bikaner-Nagaur Basin, north western Indian Craton. Jour. Asian Earth Sci., v.81, pp.129–141.

    Article  Google Scholar 

  • Pandey, S.K. and Kumar, S. (2013) Organic walled microbiota from the silicified algal clasts, Bhander limestone, Satna area, Madhya Pradesh. Jour. Geol. Soc. India, v.82, pp.499–508.

    Article  Google Scholar 

  • Pandey, U.K., Sastry, D.V.L.N., Pandey, B.K., Roy, M., Rawat, T.P.S., Ranjan Rajeeva and Shrivastava V. K. (2012) Geochronological (Rb-Sr and Sm-Nd) studies on intrusive gabbros and dolerite dykes from parts of northern and central Indian cratons: implications for the age of onset of sedimentation in Bijawar and Chattisgarh basins and uranium mineralisation. Jour. Geol. Soc. India, v.79, pp.30–40.

    Article  Google Scholar 

  • Pandit, M.K., Ashwal, L.D., Tucker, R.D., Carter, L.M., van Lente, B., Torsvik, T.H., Jamtveit, B. and Bhushan, S.K. (2001) Proterozoic acid magmatism in the northwest Indian Shield and its significance for Rodinia construction. Gondwana Res., v.4, pp.726–728.

    Article  Google Scholar 

  • Pascoe, E. H. (1950) Manual of the Geology of India and Burma. Government of India. v.1, 483p.

    Google Scholar 

  • Patranabis-Deb, S. (2003) Proterozoic felsic volcanism in the Pranhita-Godavari valley, India: its implication on the origin of the basin. Jour. Asian Earth Sci., v.21, pp.623–631.

    Article  Google Scholar 

  • Patranabis-Deb, S., Bickford, M.E., Hill, B., Chaudhuri, A.K. and Basu, A. (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ~500 Ma adjustment in Indian Proterozoic stratigraphy. Jour. Geol., v.115, pp.407–415.

    Article  Google Scholar 

  • Patranabis-Deb, S. and Chaudhuri, A.K. (2008) Sequence evolution in the eastern Chhattisgarh BasIn: constraints on correlation and stratigraphic analysis. The Palaeobotanist, v.57, pp.15–32.

    Google Scholar 

  • Patranabis-Deb, S. and Chaudhuri, A.K. (2010) Stratigraphic and tectonic evolution of the Mesoproterozoic Chattisgarh basin in central India. Indian Jour. Geol., v.80, pp.139–155.

    Google Scholar 

  • Patranabis-Deb, S., Saha, D. and Tripathy, V. (2012) Basin stratigraphy, sea-level fluctuations and their global tectonic connections- evidence from the Proterozoic Cuddapah Basin. Geol. Jour., v.47, pp.263–283.

    Google Scholar 

  • Pinet, N., Lavoie, D., Dietrich, J., Hu, K. and Keating, P. (2013) Architecture and subsidence history of the intracratonic Hudson Bay Basin, northern Canada. Earth Sci. Rev., v.125, pp.1–23.

    Article  Google Scholar 

  • Prajapati, S.K., Singh, C.L., Singh, B. and Kumar, A. (2004) Structure and crust beneath Chhattisgarh basin based on gravity and magnetic modeling. Proc. 5th Conference & Exposition on Petroleum Geophysics, Hyderabad, India, pp.963–966.

    Google Scholar 

  • Prasad, B. (2007) Obruchevella and other terminal Proterozoic (Vindhyan) organic-walled microfossils from the Bhander Group (Vindhyan Supergroup), Madhya Pradesh. Jour. Geol. Soc. India, v.69, pp.295–310.

    Google Scholar 

  • Prasad, B., Asher, R. and Borgohai, B. (2010) Late Neoproterozoic (Ediacaran)-early Paleozoic (Cambrian) acritarchs from the Marwar Supergroup, Bikaner-Nagaur Basin, Rajasthan. Jour. Geol. Soc. India, v.75, pp.415–431.

    Article  Google Scholar 

  • Prasad, S. and De, C. (2012) Records of Lower Cambrian (upper Tommotian-Atdabanian) life in the Marwar Supergroup of Rajasthan: their palaeoenvironment, palaeobiogeography and significance in Pc-C boundary delineation. Indian Jour. Geosci., v.66, pp.119–132.

    Google Scholar 

  • Radhakrishna, B.P. (1987) Purana Basins of Peninsular India.Mem. Geol. Soc. India, no.6, 518p.

    Google Scholar 

  • Radhakrishna, B.P. and Ramakrishnan, M. (1988) Archaean- Proterozoic boundary in India. Jour. Geol. Soc. India, v.32, pp.263–278.

    Google Scholar 

  • Rai, V. and Singh, V.K. (2004) Discovery of Obruchevella Reitlinger, 1948 from the late Palaeoproterozoic lower Vindhyan succession and its significance. Jour. Paleo. Soc. India, v.49, pp.189–196.

    Google Scholar 

  • Ramakrishnan, M. (1987) Stratigraphy, sedimentary environment and evolution of the Late Proterozoic Indravati Basin, central India. In: B.P. Radhakrishna, (Ed.), Purana Basins of Peninsular India. Mem. Geol. Soc. India, no.6, pp.139–160.

    Google Scholar 

  • Ramakrishnan, M. and Vaidyanadhan, R. (2010) Geology of India. Geol. Soc. India, Bangalore, v.1, 552p.

    Google Scholar 

  • Rasmussen, B., Bose, P.K., Sarkar, S., Banerjee, S., Fletcher, I.R. and Mcnaughton, N.J. (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: Possible implications for early evolution of animals. Geology, v.30, pp.103–106.

    Article  Google Scholar 

  • Rathore, S.S., Venkatesan, T.R. and Srivastava, R.K. (1999) Rb- Sr isotope dating of Neoproterozoic (Malani Group) magmatism from southwest Rajasthan, India: evidence of younger Pan-African thermal event by 40Ar-39Ar studies. Gondwana Res., v.2, pp.271–281.

    Article  Google Scholar 

  • Ratre, K., de Waele, B., Biswal, T.K. and Sinha, S. (2010) SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450-517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula. Jour. Asian Earth Sci., v.39, pp.565–577.

    Article  Google Scholar 

  • Ravikant, V., Hashmi, S., Chatterjee, C., Ji, W.-Q. and Wu, F.-Y. (2014) Initiation of the intracratonic Cuddapah basIn: evidence from Paleoproterozoic (1995 Ma) anorogenic porphyritic granite in Eastern Dharwar Craton basement. Jour. Asian Earth Sci., v.79, pp.235–245.

    Article  Google Scholar 

  • Ray, J.S., Martin, M.W., Veizer, J., and Bowring, S.A. (2002) UPb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology, 30, pp.131–134.

    Article  Google Scholar 

  • Raza, M., Khan, A. and Shamim Khan, M. (2009) Origin of Late Palaeoproterozoic Great Vindhyan basin of North Indian shield: Geochemical evidence from mafic volcanic rocks. Jour. Asian Earth Sci., v.34, pp.716–730.

    Article  Google Scholar 

  • Riding, R. and Sharma, M. (1998) Late Palaeoproterozoic (~1800–1600 Ma) stromatolites, Cuddapah Basin, southern India: cyanobacterial or other bacterial microfabrics? Precambrian Res., v.92, pp.21–35.

    Article  Google Scholar 

  • Roy, A. and Chakraborti, K. (2008) Precambrian mafic-ultramafic magmatism in Central Indian Tectonic Zone. Jour. Geol. Soc. India, v.72, pp.123–140.

    Google Scholar 

  • Roy, A. and Prasad, M.H. (2001) Precambrian of central India: a possible tectonic model. Sp. Pub. Geol. Surv. India, v.64, pp.177–197.

    Google Scholar 

  • Saha, A.K. (1994) Crustal Evolution of Singhbhum-North Orissa: Eastern India. Mem. Geol. Soc. India, v.27, 341 p.

    Google Scholar 

  • Saha, D. and Ghosh, G. (1987) Tectonic setting of Proterozoic sediments around Somanpalli, Godavari Valley. Jour. Indian Assoc. Sedim., v.7, pp.29–45.

    Google Scholar 

  • Saha, D. and Patranabis-Deb, S. (2014) Proterozoic evolution of Eastern Dharwar and Bastar cratons, India: An overview of the intracratonic basins, craton margins and mobile belts. Jour. Asian Earth Sci., v.91, pp.230–251.

    Article  Google Scholar 

  • Saha, D. and Tripathy, V. (2012) Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review. Spec. Publ. Geol. Soc., v.365, pp.161–184.

    Article  Google Scholar 

  • Saha, L., Bhowmik, S.K., Fukuoka, M. and Dasgupta, S. (2008) Contrasting episodes of regional granulite-facies metamorphism in enclaves and host gneisses from the Aravalli- Delhi mobile belt, NW India. Jour. Petrol., v.49, pp.107–128.

    Article  Google Scholar 

  • Saha, S., Das, K., Chakraborty, P.P., Das, P., Karmakar, S. and Mamtani, M.A. (2013) Tectono-magmatic evolution of the Mesoproterozoic Singhora basin, central India: Evidence for compressional tectonics from structural data, AMS study and geochemistry of basic rocks. Precambrian Res., v.227, pp.276–294.

    Article  Google Scholar 

  • Sandiford, M. and Powell, R. (1986) Deep crustal metamorphism during continental extension: modern and ancient examples. Earth Planet. Sci. Lett., v.79, pp.151–158.

    Article  Google Scholar 

  • Santosh, M. (2012) India’s Palaeoproterozoic legacy. In: Mazumder, Rajat and Saha, Dilip (Eds.), Palaeoproterozoic of India. Spec. Publ. Geol. Soc., v.365, pp.263–288

    Article  Google Scholar 

  • Santosh, M., Yokoyama, K. and Acharyya, S.K. (2004) Geochronology and tectonic evolution of Karimnagar and Bhopalpatnam granulite belts, central India. Gondwana Res., v.7, pp.501–518.

    Article  Google Scholar 

  • Sarangi, S., Gopalan, K. and Kumar, S. (2004) Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res., v.132, pp.107–121.

    Article  Google Scholar 

  • Sarkar, A.N. (2000) Tectonic classification of Indian peninsular shield: review of fifty years of progress and proposal for a new scheme. Geol. Surv. India Spec. Publ., v.55, pp.35–49.

    Google Scholar 

  • Sarkar, S., Banerjee, S., Samanta, P., Chakraborty, N., Chakraborty, P.P., Mukhopadhyay, S. and Singh, A.K. (2014) Microbial mat records in siliciclastic rocks: examples from four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. Jour. Asian Earth Sci., v.91, pp.362–377.

    Article  Google Scholar 

  • Sarkar, S., Eriksson, P.G. and Chakraborty, S. (2004) Epeiric sea formation on Neoproterozoic supercontinent break-up: A distinctive signature in coastal storm bed amalgamation. Gondwana Res., v.7, pp.313–322.

    Article  Google Scholar 

  • Satyavani, N., Dixit, M.M. and Reddy, P.R. (2001) Crustal velocity structure along the Nagaur-Rian sector of the Aravalli fold belt, India, using reflection data. Jour. Geodynamics, v.31, pp.429–443.

    Article  Google Scholar 

  • Scheck, M. and Bayer, U. (1999) Evolution of the Northeast German Basin- inferences from a 3D structural model and subsidence analysis. Tectonophysics, v.313, pp.145–169.

    Article  Google Scholar 

  • Sesha Sai, V.V. (2014) Pyroclastic volcanism in Papaghni subbasin, Andhra Pradesh: Significant Paleoproterozoic tectonomagmatic event in SW part of the Cuddapah basin, Eastern Dharwar craton. Jour. Geol. Soc. India, v.83, pp.355–362.

    Article  Google Scholar 

  • Sharma, M. (2008) Neoproterozoic biotic signatures in thepeninsular Indian basins- An overview. Mem. Geol. Soc. India, No.74, pp.119–131.

    Google Scholar 

  • Sharma, M. and Shukla, M. (1999) Carbonaceous megaremains from the neoproterozoic Owk Shales Formation of the Kurnool Group, Andhra Pradesh, India. Curr. Sci., v.76, pp.1247–1250.

    Google Scholar 

  • Sharma, M. and Shukla, M. (2000) Gigantism in Neoproterozoic carbonaceous megaremains, a possible marker event: evidences from the Bhima and the Kurnool basins of South India. International Geological Congress, Abstracts 31:CD.

  • Sharma, M., Shukla, M. and Venkatachala, B.S. (1992) Metaphyte and metazoan fossils from Precambrian sediments of India: a critique. Palaeobotanist, v.40, pp.8–51.

    Google Scholar 

  • Sharma, M. and Shukla, Y. (2009) Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Res., v.173, pp.105–122.

    Article  Google Scholar 

  • Sharma, M. and SHUKLA, Y. (2012a) Megascopic carbonaceous compression fossils from the Neoproterozoic Bhima Basin, Karnataka, South India. Spec. Publ. Geol. Soc., v.366, pp.277–293.

    Article  Google Scholar 

  • Sharma, M. and SHUKLA, Y. (2012b) Occurrence of helically coiled microfossil Obruchevella in the Owk Shale of the Kurnool Group and its significance. Jour. Earth Syst. Sci., v.121, pp.755–768.

    Article  Google Scholar 

  • Sharma, Ram S. (2009) Cratons and Fold Belts in India. Lecture Notes in Earth Sciences, Springer, v.127, 304p.

    Google Scholar 

  • Singh, C.L., Lal, T., Kumar, A. and Prajapati, S.K. (2006) A study of geological setting of northeastern part of Chhattisgarh Basin, Mahanadi Graben and Bilaspur-Raigarh-Surguja gneissic belt from gravity anomalies. Jour. Geol. Soc. India, v.68, pp.1093–1099.

    Google Scholar 

  • Singh, I.B. (1985) Palaeogeography of Vindhyan Basin and its relationship with other late Proterozoic basins of India. Jour. Paleo. Soc. India, v.30, pp.35–41.

    Google Scholar 

  • Sinha-Roy, S. (1984) Precambrian interaction in Rajasthan, N.W. India. Ind. J. Earth. Sci., CEISM Seminar Volume, pp.84–91.

    Google Scholar 

  • Sinha-Roy, S. (2004) Precambrian terranes of Rajasthan, India and their linkages with plate tectonicscontrolled mineralization types and metallogeny. In: M. Deb and W.D. Goodfellow (Eds.), Sediment-Hosted Lead-Zinc Sulphide Deposits. Narosa, Delhi. pp.222–245.

    Google Scholar 

  • Sinha-Roy, S. and Mohanty, M. (1988) Blueschist facies metamorphism in the ophiolitic mélange of the late Proterozoic Delhi fold belt, Rajasthan, India. Precambrian Res., v.42, pp.97–105.

    Article  Google Scholar 

  • Srivastava, P. (2009) Trachyhystrichosphaera: An age-marker acanthomorph from the Bhander group, upper Vindhyan, Rajasthan. Jour. Earth Syst. Sci., v.118, pp.575–582.

    Article  Google Scholar 

  • Srivastava, P. (2014) Largest Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: Their palaeobiological significance. Geoscience Frontiers, v.5, pp.183–191.

    Article  Google Scholar 

  • Sushini, K., Srijayanthi, G., Solomon Raju, P., and Ravi Kumar, M. (2014) Estimation of sedimentary thickness in the Godavari basin. Natural Hazards, v.71, pp.1847–1860.

    Article  Google Scholar 

  • Thomson, D., Rainbird, R.H. and Dix, G. (2014) Architecture of a Neoproterozoic intracratonic carbonate ramp succession: Wynniatt Formation, Amundsen Basin, Arctic Canada. Sedimentary Geol., v.299, pp.119–138.

    Article  Google Scholar 

  • Turner, C.C., Meert, J.G., Pandit, M.K. Andkamenov, G.D. (2014) A detrital zircon U?Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography. Gondwana Res., v.26, pp.348–364.

    Article  Google Scholar 

  • Valdiya, K.S. (1998) Dynamic Himalaya. Hyderabad, University Press (India), 178 p.

    Google Scholar 

  • Vansutre, S., Hari, K.R. and Vishwakarma, N. (2013) Implications of geochemistry in support of Palaeo-Proterozoic tectonothermal evolution of Bhopalpatnam Granulite Belt, Bastar Craton, Central India. Jour. Geol. Soc. India, v.81, pp.503–513.

    Article  Google Scholar 

  • Vasanthi, A. and Mallick, K. (2006) Bouger gravity modelling of Kaladgi-Badami Basin, Karnataka. Jour. Geol. Soc. India, v.68, pp.937–945.

    Google Scholar 

  • Venkata Raju, D.C., Rajesh, R.S. and Mishra, D.C. (2003) Bouguer anomaly of the Godavari basin, India and magnetic characteristics of rocks along its coastal margin and continental shelf: Geology of the Pranhita-Godavari Valley, India. Jour. Asian Earth Sci., v.21, pp.535–541.

    Article  Google Scholar 

  • Venkateswarlu, M. and Chalapathi Rao, N. V. (2013) New Paleomagnetic and rock magnetic results on Mesoproterozoic kimberlites from the Eastern Dharwar craton, southern India: towards constraining India’s position in Rodinia. Precambrian Res., v. 224, pp. 588–596.

    Article  Google Scholar 

  • Vijaya Rao, V., Sain, K. and Krishna, V.G. (2007) Modelling and inversion of single-ended refraction data from the shot gathers of multifold deep seismic reflection profiling??an approach for deriving the shallow velocity structure. Geophys. Jour. Internat., v.169, pp.507–514.

    Article  Google Scholar 

  • Woodcock, N.H. (2004) Life span and fate of basins. Geology, v.32, pp.685–688.

    Article  Google Scholar 

  • Xie, X. and Heller, P.L. (2009) Plate tectonics and basin subsidence history. Bull. Geol. Soc. Amer., v.121, pp.55–64.

    Google Scholar 

  • Yellappa, T., Chalapathi Rao, N.V. and Chetty, T.R.K. (2010) Occurrence of lamproitic dykes at the northern margin of the Indravati Basin, Bastar Craton, Central India. Jour. Geol. Soc. India, v.75, pp.632–643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Bickford, M.E. An alternate perspective on the opening and closing of the intracratonic Purana basins in peninsular India. J Geol Soc India 85, 5–25 (2015). https://doi.org/10.1007/s12594-015-0190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-015-0190-y

Keywords

Navigation