Skip to main content
Log in

Kaolinite Occurrence of Kachchh, Gujarat: A Product from Rhyolitic Tuff by Hydrothermal Alteration

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Kaolinite associated with Mesozoic sediments of Kachchh and alkaline igneous rocks are not well studied in view of its genesis. The petrography, EPMA and DTA studies support that the studied kaolinite samples formed by mature transformation from rhyolitic tuff by hydrothermal alteration in epithermal condition. Such postulation indicates that there was intermittent acid volcanic episode along with alkaline basic igneous magmatism in the Cretaceous of Kachchh basin, western part of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali Sayin, S. (2007) Origin of kaolinite deposits: Evidence from the Hisarcik (Emet-Kutahya) deposits, Western Turkey. Turkish Jour Earth Sci., v.16, 77–96.

    Google Scholar 

  • Biswas, S.K. (2005) A review of structure and tectonics of Kutch basin, western India, with special reference to earthquake. Curr. Sci., v.88(10), pp.1592–1600.

    Google Scholar 

  • Bose, M.K. (1980) Alkaline magmatism in Deccan volcanic province. Jour. Geol. Soc. India, v.21(7), pp.317–329.

    Google Scholar 

  • Brindley, G.W., Chih-chun, K., Harrison, J.L., Lipsicas, M. and Raythatha, R. (1986) Relations between structural disorder and other characteristics of kaolinites and dickites. Clays & Clay Minerals, v.34, pp.233–249.

    Article  Google Scholar 

  • Buie, B.F. (1963) Possibility of volcanic origin of the Cretaceous sedimentary kaolin of south Carolina and Georgia; Florida State University. Abst. pp.195.

  • Celik, M., Karakaya, N and Temel, A. (1999) Clay minerals in hydrothermally altered volcanic rocks, Eastern Pondites, Turkey. Clay and Clay Minerals, v.47(6) pp.708–717.

    Article  Google Scholar 

  • De La Fuente, S., Cusdros, J., Fiore, S. et al. (2000) Electron microscopic study of volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clay and Clay Minerals, v.48(3) pp.339–350.

    Article  Google Scholar 

  • Dey, A. (1969) A volcanic plug of differentiated alkaline olivine basalt in Kutch. Proc. Indian Sci. Cong. 56 session. Pt III, p.180.

  • Donoghue, E, Valentin R. Troll, H. C., O’Halloran, Walter T. R, Torrado, F.J.P. (2008) Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands. Jour. Volcanol. Geothermal Res., v.176, pp.551–564.

    Article  Google Scholar 

  • Garcia-Romero, E., Vegas, J., Baldonedo, J.L. et al. (2005) Clay minerals as alteration products in basaltic volcanoclastic deposits of La Palma (Cannary Islands, Spain). Sediment. Geol., v.174(3–4), pp.237–253.

    Article  Google Scholar 

  • Harvey, C.C. and Murray, H. H. (1993) The geology, mineralogy and exploitation of Halloysite clay of Northland, New Zeeland. In Murray H.H., Bundy W.M. and Harvey, C.C. (Eds.), Kaolin Genesis and Utilisation. Spec. Publ. 1, The Clay Mineral Society, Bloomington, pp.233–248.

    Google Scholar 

  • Hemley, J.J. (1959) Some Mineralogical Equilibria in the System K2O-Al2O3-SiO2-H2O. American Jour. Sci., v.257, pp.241–270.

    Article  Google Scholar 

  • Karakas, Z and Kadir, S. (2000) Devitrification of volcanic grlasses in Konya volcanic units, Turkey. Turkish Jour Earth Sci., v.9, pp.39–46.

    Google Scholar 

  • Maitra, M. and Korakappa, M.M. (2012) Tschermask clinopyroxene-bearing calc-silicate skarn rock at Nirwandh, Patcham Island, Kachhah, Gujarat. Jour. Geol. Soc. India, v.80, pp.609–916.

    Article  Google Scholar 

  • Maitra, M. (2005) Petrology of alkaline plugs of Patcham Island, Kachhah district, Gujarat. Indian Jour. Geol., v.75 (1–4), pp.167–190.

    Google Scholar 

  • Ruiz Cruz, M.D. (2007) Genesis and evolution of kaolin-group minerals during the diagenesis and beginning of metamorphism. In: Fernando Nieto and Juan Jiménez-Millán (Eds.), Diagenesis and Low-Temperature Metamorphism. Theory, Methods and Regional Aspects. Seminarios SEM, 3, pp.41–52.

  • Sanchez-Soto, P.J., Justo, A. and Parez-Rodriguez, J.L. (1994) Grinding effect on kaolinite-pyrophyllite-illite natural mixtures and its influence of mullite formation. Jour. Material Sci., v.29, pp.1276–1283.

    Article  Google Scholar 

  • Singh, I.B. and Sukla, U.K. (1991) Significance of Trace fossils in Bhuj Sandstone Lower Cretaceous), Bhuj area, Kachchh. Jour. Palaeont. Soc. India, v.36, pp.121–126.

    Google Scholar 

  • Singh, R. K., Agrawalla, R.C, Verma, D. P., Goel, A. K. and Gupta, S.K. (2006) Hydrocarbon Exploration of Mesozoic in Kutch Offshore Area, 6th International Conference & Exposition on Petroleum Geophysics “Kolkata 2006”.

  • Sukla, U.K. and Singh, I.B. (1990) Facies analysis of Bhuj Sandstone (Lower Cretaceous), Bhuj area, Kachchh. Jour. Palaeont. Soc. India, v.35, pp.189–196.

    Google Scholar 

  • Tzuzuki, Y. and Mizutani, S. (1971) A study of rock alteration process based on kinetics of hydrothermal experiment. Contrib. Mineral. Petrol., v.30, pp.15–33.

    Article  Google Scholar 

  • Yuan, Y., Shi, G., Yang, M., Wu, Y., Zhang, Z., Huang, A. and Zhang, J. (2014) Formation of hydrothermal kaolinite deposit from rhyolitic tuff in Jiangxi, China. Jour. Earth Sci., v.25(3), pp.495–505.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to Dr. M.M. Mukherjee, the then director, Central Petrologial Laboratories, GSI Kolkata and ex-Deputy Director General, GSI, Kolkata for providing necessary laboratory supports and encouragements. The authors are also grateful to the anonymous reviewers for critically reviewing the manuscript and suggesting improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Maitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitra, M., Gangopadhyay, K.K. Kaolinite Occurrence of Kachchh, Gujarat: A Product from Rhyolitic Tuff by Hydrothermal Alteration. J Geol Soc India 94, 78–80 (2019). https://doi.org/10.1007/s12594-019-1269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1269-7

Navigation