Skip to main content
Log in

Design of optical quaternary adder and subtractor using polarization switching

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The replacement of binary logic with the multi-valued logic based (MVL) system in the optical domain might be the way to fulfill the demand of faster data computing with a huge amount of data handling capability. Quaternary logic is one of the most promising MVL. In this article, the authors have proposed a new method of developing optical adder and subtractor based on quaternary logic. The frequency encoding technique is used here for data representation because of its inherent property of constancy during reflection, refraction, and transmission. So that, instead of any fluctuation in intensity, different bits can be processed or communicated without any error and thus, the bit error rate can be minimized which makes the scheme novel one. Polarization switching characteristics of semiconductor optical amplifier are adopted here to develop these basic units. The simulative studies on PSW clarify the optical switching mechanism of it. The optical circuits of quaternary adder and subtractor are also testified with simulation results for different cases and thus the admissibility of the proposed scheme is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. V. Patel, K.S. Gurumurthy, Arithmetic operation in multi-valued logic. Int. J. VLSICS 1(1), 21–32 (2010)

    Article  Google Scholar 

  2. N.C. Band, A.U. Trivedi, Review on high performance quaternary arithmetic an logic unit in standard CMOS. Int. J. Recent Innov. Trends Comput. Commun. 2(12), 4176–4179 (2014)

    Google Scholar 

  3. K.C. Smith, The prospects for multi-valued logic: a technology and applications view. IEEE Trans. Comput. 30(9), 619–634 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. N.W. Umredkar, M.A. Gaikwad, D.R. Dandekar, Review of quaternary adders in voltage mode multi-valued logic. Int. J. Comput. Appl. (0975-8887), special issue on “Recent Trends in Engineering Technology-2013” (2013)

  5. S.K. Garai, All-optical method of developing some fundamental and functional quaternary logic gates. Opt. Int. J. Light Electron. Opt. 125(3), 1030–1033 (2014)

    Article  Google Scholar 

  6. T. Chattopadhyay, C. Taraphdar, J.N. Roy, Quaternary Galois field adder based all-optical multivalued logic circuits. Appl. Opt. 48(22), E35–E44 (2009)

    Article  ADS  Google Scholar 

  7. M.K. Habib, A.K. Cherri, Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division. Opt. Laser Technol. 30(8), 515–525 (1998)

    Article  ADS  Google Scholar 

  8. I. Jahangir, D.M.N. Hasan, N.A. Siddique, S. Islam, M.M. Hasan, Design of qua-ternary sequential circuits using a newly proposed quaternary algebra, in Proceedings of 12th International Conference on Computers and Information Technology (ICCIT 2009), 2009, p. 203

  9. J. Caulfield, R.A. Soref, L. Qian, A. Zavalin, J. Hardy, Generalized optical logic elements—GOLEs. Opt. Commun. 271(2), 365–376 (2007)

    Article  ADS  Google Scholar 

  10. N.W. Umredkar, M.A. Gaikwad, D.R. Dandekar, Design of low power quaternary adders in voltage mode multi-valued logic. IOSR J. VLSI Signal Process. 3(1), 15–21 (2013)

    Article  Google Scholar 

  11. T. Chattopadhyay, All-optical quaternary circuits using quaternary T-gate. Opt. Int. J. Light Electron Opt. 121(19), 1784–1788 (2010)

    Article  Google Scholar 

  12. R.R. Korde, D. Rotake, Design modulo-4 and Galois field adder, subtractor and multiplier using quaternary logic. IOSR J. VLSI Signal Process. 4(4), 41–52 (2014)

    Article  Google Scholar 

  13. A.N. Sakhare, M.L. Keote, Application of Galois field in VLSI using multi-valued logic. Int. J. Eng. Sci. Innov. Technol. 2(1), 200–209 (2013)

    Google Scholar 

  14. M. Zhao, J.D. Merlier, G. Morthier, R. Baets, Dynamic birefringence of the linear optical amplifier and application in optical regeneration. IEEE J. Sel. Topics Quantum Electron. 8(6), 1399–1404 (2002)

    Article  ADS  Google Scholar 

  15. B.S.G. Pilai, M. Premaratne, D. Abramson, K.L. Lee, A. Nirmalathas, C. Lim, S. Shinada, N. Wada, T. Miyazai, Analytical characterization of optical pulse propagation in polarization-sensitive semiconductor optical amplifiers. IEEE J. Quantum Electron. 42(10), 1062–1077 (2006)

    Article  ADS  Google Scholar 

  16. L.G. Guo, M.J. Connelly, A Mueller-matrix formalism for modelling polarization azimuth and ellipticity angle in semiconductor optical amplifiers in a pump-probe scheme. J. Lightwave Technol. 25(1), 410–420 (2007)

    Article  ADS  Google Scholar 

  17. H.J.S. Dorren, Daan. Lenstra, Yong. Liu, Martin.T. Hill, Giok.-Djan. Khoe, Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron. 39(1), 141–148 (2003)

    Article  ADS  Google Scholar 

  18. S. Mandal, D. Mandal, S.K. Garai, An all-optical method of developing data communication system with error detection circuit. Opt. Fiber Technol. 20(2), 120–129 (2014)

    Article  ADS  Google Scholar 

  19. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, D.T. Nielson, Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantumwells. IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006)

    Article  ADS  Google Scholar 

  20. F. Girardin, G. Guekos, A. Houbavlis, Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 10(6), 784–786 (1998)

    Article  ADS  Google Scholar 

  21. R.J. Manning, D.A.O. Davies, Three-wavelength device for all-optical signal processing. Opt. Lett. 19(12), 889–891 (1994)

    Article  ADS  Google Scholar 

  22. J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S.B. Ezra, S. Tsadka, W. Freude, J. Leuthold, Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion. IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007)

    Article  ADS  Google Scholar 

  23. J. Leuthold, D.M. Marom, S. Cabot, J. Jaques, R. Ryf, C.R. Giles, All-optical wavelength conversion using a pulse reformatting optical filter. IEEE J. Lightwave Technol. 22(01), 186–192 (2004)

    Article  ADS  Google Scholar 

  24. A. Abd El Aziz, Engy K. El Nayal, Moustafa H. Aly, A.K. AboulSeoud, W.P. Ng, Impact of amplified spontaneous emission on the travelling wave semiconductor optical amplifier performance, in 2nd International Workshop on Optical Wireless Communications (IWOW) (2013)

  25. S.K. Garai, All-optical quaternary logic gates—an extension of binary logic gates. Opt. Laser Technol. 67, 125–136 (2015)

    Article  ADS  Google Scholar 

  26. R.C. Figueiredo, N.S. Ribeiro, A.M.O. Ribeiro, C.M. Gallep, E. Conforti, Hundred-picoseconds electro-optical switching with semiconductor optical amplifiers using multi-impulse step injection current. J. Lightwave Technol. 33(1), 69–77 (2015)

    Article  ADS  Google Scholar 

  27. I. Rendón-Salgado, R. Gutiérrez-Castrejón, 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach–Zehnder interferometer. Opt. Commun. 399, 77–86 (2017)

    Article  ADS  Google Scholar 

  28. K. Singh, G. Kaur, M.L. Singh, Enhanced performance of all-optical half-subtracter based on cross-gain modulation (XGM) in semiconductor optical amplifier (SOA) by accelerating its gain recovery dynamics. Photon. Netw. Commun. 34(1), 111–130 (2017)

    Article  Google Scholar 

  29. D.K. Gayen, T. Chattopadhyay, Simultaneous all-optical basic arithmetic operations using QD-SOA-assisted Mach–Zehnder interferometer. J Comput. Electron. 15(3), 982–992 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisir Kumar Garai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Mandal, D., Mandal, M.K. et al. Design of optical quaternary adder and subtractor using polarization switching. J Opt 47, 332–350 (2018). https://doi.org/10.1007/s12596-018-0460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0460-3

Keywords

Navigation