Skip to main content
Log in

Thermophysical properties of Sm2(Zr1−x Ce x )2O7 ceramics

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sm2(Zr1−x Ce x )2O7 (x = 0.1, 0.2, and 0.3) ceramics were prepared by solid reaction method at 1600°C for 10 h using Sm2O3, ZrO2, and CeO2 as starting reactants. The phase compositions, microstructures, thermal expansion coefficients, and partial thermal conductivities of these materials were investigated. X-ray diffraction (XRD) results reveal that Sm2(Zr0.9Ce0.1)2O7 with pyrochlore structure and Sm2(Zr1−x Ce x )2O7 (x = 0.2 and 0.3) with fluorite structure were synthesized, and scanning electrical microscopy (SEM) images show that the microstructures of these products are very dense. The linear thermal expansion coefficients increase with increasing temperature in the temperature range from ambient to 1200°C, and the thermal expansion coefficients increase with increasing content of doped CeO2. The thermal conductivities of Sm2(Zr0.8Ce0.2)2O7 and Sm2(Zr0.7Ce0.3)2O7 decrease gradually with an increase in temperature. These results show that the synthesized ceramic materials can be explored as novel prospective candidate materials for use in new thermal barrier coating systems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beele W., Marijnissen G., and Lieshout V.A., The evolution of thermal barrier coatings—status and upcoming solutions for today’s key issues, Surf. Coat. Technol., 1999, 120–121:61.

    Article  Google Scholar 

  2. Padture N.P., Maurice G., and Jordan E.H., Thermal barrier coatings for gas-turbine engine applications, Science, 2002, 4(12): 280.

    Article  ADS  Google Scholar 

  3. Cao X.Q., Vassen R., and Stoever D., Ceramics materials for thermal barrier coatings, J. Eur. Ceram. Soc., 2004, 24: 1.

    Article  CAS  Google Scholar 

  4. Clarke D.R., Materials selection guideline for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol., 2003, 163-164: 67.

    Article  CAS  Google Scholar 

  5. Yamanaka S., Maekawa T., Muta H., and Matsuda T., Thermal and mechanical properties of SrHfO3, J. Alloys Compd., 2004, 381: 295.

    Article  CAS  Google Scholar 

  6. Kurosaki K., Tanaka T., Maekawa T., and Yamanaka S., Thermophysical properties of SrY2O4, J. Alloys Compd., 2005, 398: 304.

    Article  CAS  Google Scholar 

  7. Pan W., Xu Q., Wang J.D., Hao C.L., Miao H.Z., Mori K., and Torigoe T., Novel low thermal conductivity ceramic materials for thermal barrier coatings, Key Eng. Mater., 2005, 280–283: 1497.

    Article  Google Scholar 

  8. Song H.S., Qiang X., Chi F.W., and Ling L., Analysis of Sm2Zr2O7 forming mechanism by X-ray diffraction, J. Rare. Met. Mater. Eng. (in Chinese), 2007, 8(36): 533.

    Google Scholar 

  9. Song Z.H., Qiang X., Chi F.W., and Ling L., Thermal conductivity of (La0.5Sm0.5)2(Zr0.9Ce0.1)2O7 ceramic for thermal barrier coatings, Key Eng. Mater., 2008, 368–372: 1331.

    Google Scholar 

  10. Qiang X., Wei P., Dong J.W., Hao Q.L., Zhuo M.H., Kazutaka M., and Torigoe T., Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings, Mater. Lett., 2005, 59: 2804.

    Article  Google Scholar 

  11. Jindrich L., Pavel C., David S., Ales S., and Petr A., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, 359: 27.

    Google Scholar 

  12. Spencer P.J., Estimation of thermodynamic data for metallurgical applications, Thermochim. Acta, 1998, 314: 1.

    Article  CAS  Google Scholar 

  13. Song H.Z., Qiang X., Chi F.W., and Ling L., Effect of vacancy on thermal expansion coefficient of Sm2Zr2O7 ceramic, J. Rare Met. Mater. Eng. (in Chinese), 2007, 8(36): 541.

    Google Scholar 

  14. Cao X.Q., Vassen R., Fischer W., Tietz F., Gen W.J., and Stöver D., Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications, Adv. Mater., 2003, 15(17): 1438.

    Article  CAS  Google Scholar 

  15. Subramanian M.A., Aravamudan G., and Rao G.V.S., Oxides pyrochlores—a review, Prog. Solid State Chem., 1983, 15:55.

    Article  CAS  Google Scholar 

  16. Patwe S.J., Ambekar B.R., and Tyagi A.K., Synthesis, characterization and lattice thermal expansion of some compounds in the system Gd2CexZr2−x O7, J. Alloys Compd., 2005, 389:243.

    Article  CAS  Google Scholar 

  17. Scheetz B.E. and White W.B., Characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy. J. Am. Ceram. Soc., 1979, 62(9–10): 468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Sun, K., Xu, Q. et al. Thermophysical properties of Sm2(Zr1−x Ce x )2O7 ceramics. Rare Metals 28, 226–230 (2009). https://doi.org/10.1007/s12598-009-0044-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0044-0

Keywords

Navigation