Skip to main content
Erschienen in: Rare Metals 4/2013

01.08.2013

Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications

verfasst von: Li-Ying Lu, Li-Na Yu, Xiao-Guang Xu, Yong Jiang

Erschienen in: Rare Metals | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monodisperse Fe-based and Co-based nanoparticles exhibit unique magnetic properties. They play important roles in magnetic storage and biomedical application. Their chemical synthesis and performance enhancement draw a lot of study interest. Investigations of magnetic metallic nanoparticles are very active in many scientific fields. This paper reviews the present advances in chemical synthesis, performance enhancement, and potential applications of monodisperse Fe-based and Co-based nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Rao CNR, Thomas PJ, Kulkarni GU. Nanocrystal: Synthesis, Properties and Application. Berlin: Springer; 2007. 9. Rao CNR, Thomas PJ, Kulkarni GU. Nanocrystal: Synthesis, Properties and Application. Berlin: Springer; 2007. 9.
[2]
Zurück zum Zitat Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):392.CrossRef Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):392.CrossRef
[3]
Zurück zum Zitat Huang SH, Juang RS. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res. 2011;13(10):4411.CrossRef Huang SH, Juang RS. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res. 2011;13(10):4411.CrossRef
[4]
Zurück zum Zitat Maenosono S, Suzukia T, Saita S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater. 2008;320(9):L79.CrossRef Maenosono S, Suzukia T, Saita S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater. 2008;320(9):L79.CrossRef
[5]
Zurück zum Zitat Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc. 2004;126(11):3392.CrossRef Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc. 2004;126(11):3392.CrossRef
[6]
Zurück zum Zitat Li YP, Srinivasan B, Jing Y, Yao XF, Hugger MA, Wang JP, Xing CG. Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc. 2010;132(12):4388.CrossRef Li YP, Srinivasan B, Jing Y, Yao XF, Hugger MA, Wang JP, Xing CG. Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc. 2010;132(12):4388.CrossRef
[7]
Zurück zum Zitat Zhang W, Zong PS, Zheng XW, Wang LB. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes. Biosens Bioelectron. 2013;42:481.CrossRef Zhang W, Zong PS, Zheng XW, Wang LB. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes. Biosens Bioelectron. 2013;42:481.CrossRef
[8]
Zurück zum Zitat Zhang J, Post M, Veres T, Jakubek ZJ, Guan JW. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J Phys Chem B. 2006;110(14):7122.CrossRef Zhang J, Post M, Veres T, Jakubek ZJ, Guan JW. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J Phys Chem B. 2006;110(14):7122.CrossRef
[9]
Zurück zum Zitat Wang C, Peng S, Lacroix LM, Sun SH. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009;2(5):380.CrossRef Wang C, Peng S, Lacroix LM, Sun SH. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009;2(5):380.CrossRef
[10]
Zurück zum Zitat Tanaka Y, Saita S, Maenosono S. Influence of surface ligands on saturation magnetization of FePt nanoparticles. Appl Phys Lett. 2008;92(9):093117.CrossRef Tanaka Y, Saita S, Maenosono S. Influence of surface ligands on saturation magnetization of FePt nanoparticles. Appl Phys Lett. 2008;92(9):093117.CrossRef
[11]
Zurück zum Zitat Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele J-U, Doerner MF. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10. Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele J-U, Doerner MF. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10.
[12]
Zurück zum Zitat Christodoulides JA, Zhang Y, Hadjipanayis GC, Fountzoulas C. CoPt and FePt nanoparticles for high density recording media. IEEE Trans Magn. 2000;36(5):2333.CrossRef Christodoulides JA, Zhang Y, Hadjipanayis GC, Fountzoulas C. CoPt and FePt nanoparticles for high density recording media. IEEE Trans Magn. 2000;36(5):2333.CrossRef
[13]
Zurück zum Zitat Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989.CrossRef Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989.CrossRef
[14]
Zurück zum Zitat Chou S-W, Zhu C-L, Neeleshwar S, Chen C-L, Chen Y-Y, Chen C-C. Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater. 2009;21(20):49551.CrossRef Chou S-W, Zhu C-L, Neeleshwar S, Chen C-L, Chen Y-Y, Chen C-C. Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater. 2009;21(20):49551.CrossRef
[15]
Zurück zum Zitat Colak L, Hadjipanayis GC. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology. 2009;20(48):485602.CrossRef Colak L, Hadjipanayis GC. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology. 2009;20(48):485602.CrossRef
[16]
Zurück zum Zitat Sun SH, Anders S, Thomson T, Baglin JEE, Toney MF. Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B. 2003;107(23):5419.CrossRef Sun SH, Anders S, Thomson T, Baglin JEE, Toney MF. Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B. 2003;107(23):5419.CrossRef
[17]
Zurück zum Zitat Sun SH. Metal salt reduction to form alloy nanoparticles, US Patent 6254662, 2001. Sun SH. Metal salt reduction to form alloy nanoparticles, US Patent 6254662, 2001.
[18]
Zurück zum Zitat Sun SH, Murray CB. Synthesis of monodisperse nanocrystals and their assembly in magnetic superlattice (invited). J Appl Phys. 1999;85(8):4325.CrossRef Sun SH, Murray CB. Synthesis of monodisperse nanocrystals and their assembly in magnetic superlattice (invited). J Appl Phys. 1999;85(8):4325.CrossRef
[19]
Zurück zum Zitat Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ. Self-assembly and magnetic properties of cobalt nanoparticles. Appl Phys Lett. 2003;82(26):4729.CrossRef Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ. Self-assembly and magnetic properties of cobalt nanoparticles. Appl Phys Lett. 2003;82(26):4729.CrossRef
[20]
Zurück zum Zitat Liu C, Wu XW, Klemmer T, Shukla N, Yang XM, Weller D, Roy AG, Tanase M, Laughlin D. Polyol process synthesis of monodispersed FePt nanoparticles. J Phys Chem B. 2004;108(2):6121.CrossRef Liu C, Wu XW, Klemmer T, Shukla N, Yang XM, Weller D, Roy AG, Tanase M, Laughlin D. Polyol process synthesis of monodispersed FePt nanoparticles. J Phys Chem B. 2004;108(2):6121.CrossRef
[21]
Zurück zum Zitat Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and characterization of 3D CoPt nanostructures. J Am Chem Soc. 2005;127(40):13756.CrossRef Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and characterization of 3D CoPt nanostructures. J Am Chem Soc. 2005;127(40):13756.CrossRef
[22]
Zurück zum Zitat Li Y, Zhang XL, Qiu R, Qiao R, Kang YS. Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C. 2007;111(29):10747.CrossRef Li Y, Zhang XL, Qiu R, Qiao R, Kang YS. Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C. 2007;111(29):10747.CrossRef
[23]
Zurück zum Zitat Hou YL, Kondoh H, Kogure T, Ohta T. Preparation and characterization of monodisperse FePd nanoparticles. Chem Mater. 2004;16(24):5149.CrossRef Hou YL, Kondoh H, Kogure T, Ohta T. Preparation and characterization of monodisperse FePd nanoparticles. Chem Mater. 2004;16(24):5149.CrossRef
[24]
Zurück zum Zitat Srivastava C, Balasubramanian J, Turner CH, Wiest JM, Bagaria HG, Thompson GB. Formation mechanism and composition distribution of FePt nanoparticles. J Appl Phys. 2007;102(10):104310.CrossRef Srivastava C, Balasubramanian J, Turner CH, Wiest JM, Bagaria HG, Thompson GB. Formation mechanism and composition distribution of FePt nanoparticles. J Appl Phys. 2007;102(10):104310.CrossRef
[25]
Zurück zum Zitat Chen M, Pica T, Jiang YB, Li P, Yano K, Liu JP, Datye AK, Fan HY. Synthesis and self-assembly of fcc phase FePt nanorods. J Am Chem Soc. 2007;129(20):6348.CrossRef Chen M, Pica T, Jiang YB, Li P, Yano K, Liu JP, Datye AK, Fan HY. Synthesis and self-assembly of fcc phase FePt nanorods. J Am Chem Soc. 2007;129(20):6348.CrossRef
[26]
Zurück zum Zitat Gao Y, Zhang XW, Yin ZG, Qu S, You JB, Chen NF. Magnetic properties of FePt nanoparticles prepared by a micellar method. Nanoscale Res Lett. 2010;5(1):1.CrossRef Gao Y, Zhang XW, Yin ZG, Qu S, You JB, Chen NF. Magnetic properties of FePt nanoparticles prepared by a micellar method. Nanoscale Res Lett. 2010;5(1):1.CrossRef
[27]
Zurück zum Zitat Silva TLd, Varanda LC. Perpendicularly self-oriented and shape-controlled L10-FePt nanorods directly synthesized by a temperature-modulated process. Nano Res. 2011;4(7):666.CrossRef Silva TLd, Varanda LC. Perpendicularly self-oriented and shape-controlled L10-FePt nanorods directly synthesized by a temperature-modulated process. Nano Res. 2011;4(7):666.CrossRef
[28]
Zurück zum Zitat Yan QY, Purkayastha A, Kim T, Kröger R, Bose A, Ramanath G. Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability from microemulsions. Adv Mater. 2006;18(19):2569.CrossRef Yan QY, Purkayastha A, Kim T, Kröger R, Bose A, Ramanath G. Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability from microemulsions. Adv Mater. 2006;18(19):2569.CrossRef
[29]
Zurück zum Zitat Wang C, Hou YL, Kim J, Sun SH. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed. 2007;46(33):6333.CrossRef Wang C, Hou YL, Kim J, Sun SH. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed. 2007;46(33):6333.CrossRef
[30]
Zurück zum Zitat Liu HR, Lu QF, Han XF, Liu XG, Xu BS, Jia HS. The fabrication of CoPt nanowire and nanotube arrays by alternating magnetic field during deposition. Appl Surf Sci. 2012;258(19):7401.CrossRef Liu HR, Lu QF, Han XF, Liu XG, Xu BS, Jia HS. The fabrication of CoPt nanowire and nanotube arrays by alternating magnetic field during deposition. Appl Surf Sci. 2012;258(19):7401.CrossRef
[31]
Zurück zum Zitat Cagnon L, Dahmane Y, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A. Electrodeposited CoPt and FePt alloys nanowires. J Magn Magn Mater. 2007;310(2):2428.CrossRef Cagnon L, Dahmane Y, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A. Electrodeposited CoPt and FePt alloys nanowires. J Magn Magn Mater. 2007;310(2):2428.CrossRef
[32]
Zurück zum Zitat Chu SZ, Inoue S, Wada K, Kurashima K. Fabrication and structural characteristics of nanocrystalline Fe–Pt thin films and Fe–Pt nanowire arrays embedded in alumina films on ITO/glass. J Phys Chem B. 2004;108(18):5582.CrossRef Chu SZ, Inoue S, Wada K, Kurashima K. Fabrication and structural characteristics of nanocrystalline Fe–Pt thin films and Fe–Pt nanowire arrays embedded in alumina films on ITO/glass. J Phys Chem B. 2004;108(18):5582.CrossRef
[33]
Zurück zum Zitat Zeng H, Sun SH, Sandstrom RL, Murray CB. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater. 2003;266(1–2):227.CrossRef Zeng H, Sun SH, Sandstrom RL, Murray CB. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater. 2003;266(1–2):227.CrossRef
[34]
Zurück zum Zitat Yano K, Nandwana V, Poudyal N, Rong CB, Liu JP. Rapid thermal annealing of FePt nanoparticles. J Appl Phys. 2008;104(1):013918.CrossRef Yano K, Nandwana V, Poudyal N, Rong CB, Liu JP. Rapid thermal annealing of FePt nanoparticles. J Appl Phys. 2008;104(1):013918.CrossRef
[35]
Zurück zum Zitat Zeng H, Sun SH, Vedantam TS, Liu JP, Dai ZR, Wang ZL. Exchange-coupled FePt nanoparticle assembly. Appl Phys Lett. 2002;80(14):2583.CrossRef Zeng H, Sun SH, Vedantam TS, Liu JP, Dai ZR, Wang ZL. Exchange-coupled FePt nanoparticle assembly. Appl Phys Lett. 2002;80(14):2583.CrossRef
[36]
Zurück zum Zitat Vedantam TS, Liu JP, Zeng H, Sun S. Thermal stability of self-assembled FePt nanoparticles. J Appl Phys. 2003;93(10):7184.CrossRef Vedantam TS, Liu JP, Zeng H, Sun S. Thermal stability of self-assembled FePt nanoparticles. J Appl Phys. 2003;93(10):7184.CrossRef
[37]
Zurück zum Zitat Lu LY, Wang D, Xu XG, Zhan Q, Jiang Y. Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J Phys Chem C. 2009;113(46):19867.CrossRef Lu LY, Wang D, Xu XG, Zhan Q, Jiang Y. Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J Phys Chem C. 2009;113(46):19867.CrossRef
[38]
Zurück zum Zitat Lu LY, Wang D, Xu XG, Wang HC, Miao J, Jiang Y. Low temperature magnetic hardening in self-assembled FePt/Ag core–shell nanoparticles. Mater Chem Phys. 2011;129(3):995.CrossRef Lu LY, Wang D, Xu XG, Wang HC, Miao J, Jiang Y. Low temperature magnetic hardening in self-assembled FePt/Ag core–shell nanoparticles. Mater Chem Phys. 2011;129(3):995.CrossRef
[39]
Zurück zum Zitat Kang SS, Miao GX, Shi S, Jia Z, Nikles DE, Harrell JW. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J Am Chem Soc. 2006;128(4):1042.CrossRef Kang SS, Miao GX, Shi S, Jia Z, Nikles DE, Harrell JW. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J Am Chem Soc. 2006;128(4):1042.CrossRef
[40]
Zurück zum Zitat Sung YM, Lee MK, Kim KE, Kim TG. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chem Phys Lett. 2007;443(4–6):319.CrossRef Sung YM, Lee MK, Kim KE, Kim TG. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chem Phys Lett. 2007;443(4–6):319.CrossRef
[41]
Zurück zum Zitat Yu LN, Lu LY, Xu ZD, Xu XG, Miao J, Jiang Y. Enhanced L10 phase transitionin CoPt/Ag core/shell nanoparticles. Mater Lett. 2012;86:142.CrossRef Yu LN, Lu LY, Xu ZD, Xu XG, Miao J, Jiang Y. Enhanced L10 phase transitionin CoPt/Ag core/shell nanoparticles. Mater Lett. 2012;86:142.CrossRef
[42]
Zurück zum Zitat Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J. Beating the superparamagnetic limit with exchange bias. Nature. 2003;423(6942):850.CrossRef Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J. Beating the superparamagnetic limit with exchange bias. Nature. 2003;423(6942):850.CrossRef
[43]
Zurück zum Zitat Sort J, Nogue J, Surinach S. Coercivity and squareness enhancement in ball-milled hard magnetic–antiferromagnetic composites. Appl Phys Lett. 2001;79(8):1142.CrossRef Sort J, Nogue J, Surinach S. Coercivity and squareness enhancement in ball-milled hard magnetic–antiferromagnetic composites. Appl Phys Lett. 2001;79(8):1142.CrossRef
[44]
Zurück zum Zitat Lu LY, Xu XG, Zhang WT, Miao J, Jiang Y. Enhanced magnetic properties of cobalt nanoparticles on FeMn films. Mater Lett. 2010;64(22):2424.CrossRef Lu LY, Xu XG, Zhang WT, Miao J, Jiang Y. Enhanced magnetic properties of cobalt nanoparticles on FeMn films. Mater Lett. 2010;64(22):2424.CrossRef
[45]
Zurück zum Zitat He SL, Zhang HW, Delikanli S, Qin YL, Swihart MT, Zeng H. Bifunctional magneto-optical FePt–CdS hybrid nanoparticles. J Phys Chem C. 2009;113(1):87.CrossRef He SL, Zhang HW, Delikanli S, Qin YL, Swihart MT, Zeng H. Bifunctional magneto-optical FePt–CdS hybrid nanoparticles. J Phys Chem C. 2009;113(1):87.CrossRef
[46]
Zurück zum Zitat Zhou TJ, Lu MH, Zhang ZH, Gong H, Chin WS, Liu B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv Mater. 2010;22(3):403.CrossRef Zhou TJ, Lu MH, Zhang ZH, Gong H, Chin WS, Liu B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv Mater. 2010;22(3):403.CrossRef
[47]
Zurück zum Zitat Gu HW, Zheng RK, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc. 2004;126(18):5664.CrossRef Gu HW, Zheng RK, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc. 2004;126(18):5664.CrossRef
[48]
Zurück zum Zitat Zeng H, Li J, Wang ZL, Liu JP, Sun SH. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004;4(1):187.CrossRef Zeng H, Li J, Wang ZL, Liu JP, Sun SH. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004;4(1):187.CrossRef
[49]
Zurück zum Zitat Gao JH, Zhang B, Gao Y, Pan Y, Zhang XX, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc. 2007;129(39):11928.CrossRef Gao JH, Zhang B, Gao Y, Pan Y, Zhang XX, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc. 2007;129(39):11928.CrossRef
[50]
Zurück zum Zitat Chiang IC, Chen DH. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater. 2007;17(8):1311.CrossRef Chiang IC, Chen DH. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater. 2007;17(8):1311.CrossRef
[51]
Zurück zum Zitat Ciuculescu D, Amiens C, Respaud M, Falqui A, Lecante P, Benfield RE, Jiang L, Fauth K, Chaudret B. One-pot synthesis of core–shell FeRh nanoparticles. Chem Mater. 2007;19(19):4624.CrossRef Ciuculescu D, Amiens C, Respaud M, Falqui A, Lecante P, Benfield RE, Jiang L, Fauth K, Chaudret B. One-pot synthesis of core–shell FeRh nanoparticles. Chem Mater. 2007;19(19):4624.CrossRef
[52]
Zurück zum Zitat Lu LY, Zhang WT, Wang D, Xu XG, Miao J, Jiang Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater Lett. 2010;64(15):1732.CrossRef Lu LY, Zhang WT, Wang D, Xu XG, Miao J, Jiang Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater Lett. 2010;64(15):1732.CrossRef
[53]
Zurück zum Zitat Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B. 2006;110(23):11160.CrossRef Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B. 2006;110(23):11160.CrossRef
[54]
Zurück zum Zitat Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli PD, Ciccarella G, Respaud M, Palmirotta L, Cingolani R, Manna L. Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J Am Chem Soc. 2006;128(20):6690.CrossRef Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli PD, Ciccarella G, Respaud M, Palmirotta L, Cingolani R, Manna L. Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J Am Chem Soc. 2006;128(20):6690.CrossRef
[55]
Zurück zum Zitat Byrne FN, Monzon LMA, Stamenov P, Venkatesan M, Coey JMD. Influence of an Au capping layer on the magnetic properties of CoPt nanowires. Appl Phys Lett. 2011;98(25):252507.CrossRef Byrne FN, Monzon LMA, Stamenov P, Venkatesan M, Coey JMD. Influence of an Au capping layer on the magnetic properties of CoPt nanowires. Appl Phys Lett. 2011;98(25):252507.CrossRef
[56]
Zurück zum Zitat Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc. 2005;127(1):34.CrossRef Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc. 2005;127(1):34.CrossRef
[57]
Zurück zum Zitat Verdes C, Chantrell RW, Satoh A, Harrell JW, Nikles D. Self-organization, orientation and magnetic properties of FePt nanoparticles arrays. J Magn Magn Mater. 2006;304(1):27.CrossRef Verdes C, Chantrell RW, Satoh A, Harrell JW, Nikles D. Self-organization, orientation and magnetic properties of FePt nanoparticles arrays. J Magn Magn Mater. 2006;304(1):27.CrossRef
[58]
Zurück zum Zitat Richter HJ, Dobin AY, heinonen O, Gao KZ, Van der Veerdonk RJM, Lynch RT, Xue J, Weller D, Asselin P, Erden MF, Brockie RM. Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans Magn. 2006;42(10):2255.CrossRef Richter HJ, Dobin AY, heinonen O, Gao KZ, Van der Veerdonk RJM, Lynch RT, Xue J, Weller D, Asselin P, Erden MF, Brockie RM. Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans Magn. 2006;42(10):2255.CrossRef
[59]
Zurück zum Zitat Sun SH, Anders S, Hamann HF, Thiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD. Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc. 2002;124(12):2884.CrossRef Sun SH, Anders S, Hamann HF, Thiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD. Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc. 2002;124(12):2884.CrossRef
[60]
Zurück zum Zitat Zafiropoulou I, Devlin E, Boukos N, Niarchos D, Petridis D, Tzitzios V. Direct chemical synthesis of L10 FePt nanostructures. Chem Mater. 2007;19(8):1898.CrossRef Zafiropoulou I, Devlin E, Boukos N, Niarchos D, Petridis D, Tzitzios V. Direct chemical synthesis of L10 FePt nanostructures. Chem Mater. 2007;19(8):1898.CrossRef
[61]
Zurück zum Zitat Wellons MS, Morris WH, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Direct synthesis and size selection of ferromagnetic FePt nanoparticles. Chem Mater. 2007;19(10):2483.CrossRef Wellons MS, Morris WH, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Direct synthesis and size selection of ferromagnetic FePt nanoparticles. Chem Mater. 2007;19(10):2483.CrossRef
[62]
Zurück zum Zitat Capobianchi A, Colapietro M, Fiorani D, Foglia S, Imperatori P, Laureti S, Palange E. General strategy for direct synthesis of L10 nanoparticle alloys from layered precursor: the case of FePt. Chem Mater. 2009;21(10):2007.CrossRef Capobianchi A, Colapietro M, Fiorani D, Foglia S, Imperatori P, Laureti S, Palange E. General strategy for direct synthesis of L10 nanoparticle alloys from layered precursor: the case of FePt. Chem Mater. 2009;21(10):2007.CrossRef
[63]
Zurück zum Zitat Srinivasan B, Li YP, Jing Y, Xu YH, Yao XF, Xing CG, Wang JP. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed. 2009;48(15):2764.CrossRef Srinivasan B, Li YP, Jing Y, Xu YH, Yao XF, Xing CG, Wang JP. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed. 2009;48(15):2764.CrossRef
[64]
Zurück zum Zitat Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270.CrossRef Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270.CrossRef
[65]
Zurück zum Zitat Gao JH, Liang GL, Zhang B, Kuang Y, Zhang XX, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428.CrossRef Gao JH, Liang GL, Zhang B, Kuang Y, Zhang XX, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428.CrossRef
[66]
Zurück zum Zitat Chen CL, Kuo LR, Lee SY, Hwu YK, Chou SW, Chen CC, Chang FH, Lin KH, Tsai DH, Chen YY. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2013;34(4):1128.CrossRef Chen CL, Kuo LR, Lee SY, Hwu YK, Chou SW, Chen CC, Chang FH, Lin KH, Tsai DH, Chen YY. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2013;34(4):1128.CrossRef
[67]
Zurück zum Zitat Xu CJ, Yuan ZL, Kohler N, Kim J, Chung MA, Sun SH. FePt Nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346.CrossRef Xu CJ, Yuan ZL, Kohler N, Kim J, Chung MA, Sun SH. FePt Nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346.CrossRef
[68]
Zurück zum Zitat Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111(5):3036.CrossRef Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111(5):3036.CrossRef
[69]
Zurück zum Zitat Chen W, Kim J, Sun SH, Chen SW. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C. 2008;112(10):3891.CrossRef Chen W, Kim J, Sun SH, Chen SW. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C. 2008;112(10):3891.CrossRef
[70]
Zurück zum Zitat Kim J, Lee YM, Sun SH. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc. 2010;132(14):4996.CrossRef Kim J, Lee YM, Sun SH. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc. 2010;132(14):4996.CrossRef
[71]
Zurück zum Zitat Du JQ, Zhang Y, Tian T, Yan SC, Wang HT. Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift reaction. Mater Res Bull. 2009;44(6):1347.CrossRef Du JQ, Zhang Y, Tian T, Yan SC, Wang HT. Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift reaction. Mater Res Bull. 2009;44(6):1347.CrossRef
[72]
Zurück zum Zitat Kockrick E, Schmidt F, Gedrich K, Rose M, George TA, Freudenberg T, Kraehnert R, Skomski R, Sellmyer DJ, Kaskel S. Mesoporous ferromagnetic MPt@silica/carbon (M = Fe, Co, Ni) composites as advanced bifunctional catalysts. Chem Mater. 2010;22(5):1624.CrossRef Kockrick E, Schmidt F, Gedrich K, Rose M, George TA, Freudenberg T, Kraehnert R, Skomski R, Sellmyer DJ, Kaskel S. Mesoporous ferromagnetic MPt@silica/carbon (M = Fe, Co, Ni) composites as advanced bifunctional catalysts. Chem Mater. 2010;22(5):1624.CrossRef
[73]
Zurück zum Zitat Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y. Multifunctional Co–Mo films fabricated by electrochemical deposition. Electrochim Acta. 2013;106:258.CrossRef Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y. Multifunctional Co–Mo films fabricated by electrochemical deposition. Electrochim Acta. 2013;106:258.CrossRef
Metadaten
Titel
Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications
verfasst von
Li-Ying Lu
Li-Na Yu
Xiao-Guang Xu
Yong Jiang
Publikationsdatum
01.08.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Rare Metals / Ausgabe 4/2013
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-013-0117-y

Weitere Artikel der Ausgabe 4/2013

Rare Metals 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.