Skip to main content
Erschienen in: Rare Metals 3/2014

01.06.2014

Artificial neural network approach for prediction of stress–strain curve of near β titanium alloy

verfasst von: Srinivasu Gangi Setti, R. N. Rao

Erschienen in: Rare Metals | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, artificial neural network (ANN) approach was used to predict the stress–strain curve of near beta titanium alloy as a function of volume fractions of α and β. This approach is to develop the best possible combination or neural network (NN) to predict the stress–strain curve. In order to achieve this, three different NN architectures (feed-forward back-propagation network, cascade-forward back-propagation network, and layer recurrent network), three different transfer functions (purelin, Log-Sigmoid, and Tan-Sigmoid), number of hidden layers (1 and 2), number of neurons in the hidden layer(s), and different training algorithms were employed. ANN training modules, the load in terms of strain, and volume fraction of α are the inputs and the stress as an output. ANN system was trained using the prepared training set (α, 16 % α, 40 % α, and β stress–strain curves). After training process, test data were used to check system accuracy. It is observed that feed-forward back-propagation network is the fastest, and Log-Sigmoid transfer function is giving the best results. Finally, layer recurrent NN with a single hidden layer consists of 11 neurons, and Log-Sigmoid transfer function using trainlm as training algorithm is giving good result, and average relative error is 1.27 ± 1.45 %. In two hidden layers, layer recurrent NN consists of 7 neurons in each hidden layer with trainrp as the training algorithm having the transfer function of Log-Sigmoid which gives better results. As a result, the NN is founded successful for the prediction of stress–strain curve of near β titanium alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Li WP. The appliance of titanium alloy and its development. Light Met. 2002;5(53):25. Li WP. The appliance of titanium alloy and its development. Light Met. 2002;5(53):25.
[2]
Zurück zum Zitat Li L, Sun JK, Meng XJ. The appliance of titanium alloy and its development. Titanium Ind Prog. 2004;21(5):19. Li L, Sun JK, Meng XJ. The appliance of titanium alloy and its development. Titanium Ind Prog. 2004;21(5):19.
[3]
Zurück zum Zitat Schutz RW, Watkins HB. Recent developments in titanium alloy application in the energy industry. Mater Sci Eng A. 1998;243(1–2):305.CrossRef Schutz RW, Watkins HB. Recent developments in titanium alloy application in the energy industry. Mater Sci Eng A. 1998;243(1–2):305.CrossRef
[4]
Zurück zum Zitat Yamada Makoto. An overview on the development of titanium alloys for non-aerospace application in Japan. Mater Sci Eng A. 1996;213(1–2):8.CrossRef Yamada Makoto. An overview on the development of titanium alloys for non-aerospace application in Japan. Mater Sci Eng A. 1996;213(1–2):8.CrossRef
[5]
Zurück zum Zitat Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mate Sci Eng C. 2006;26(8):1269.CrossRef Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mate Sci Eng C. 2006;26(8):1269.CrossRef
[6]
Zurück zum Zitat Yao ZK, Guo HZ, Su ZW. The influences of thermodynamics parameter on (α+β) duplex titanium recrystallization percentage and static behavior. Rare Met Mater Eng. 2000;29(2):340. Yao ZK, Guo HZ, Su ZW. The influences of thermodynamics parameter on (α+β) duplex titanium recrystallization percentage and static behavior. Rare Met Mater Eng. 2000;29(2):340.
[7]
Zurück zum Zitat Boyer R, Welsch G, Collings EW. Materials Properties Handbook: Titanium Alloys. Materials Park: ASM International; 1994. 35. Boyer R, Welsch G, Collings EW. Materials Properties Handbook: Titanium Alloys. Materials Park: ASM International; 1994. 35.
[8]
Zurück zum Zitat Wood RA, Favor RJ. Titanium Alloys Handbook. 3rd ed. Metals and Ceramics Information Center, vol. 24. Columbus: Batelle; 1972. 24. Wood RA, Favor RJ. Titanium Alloys Handbook. 3rd ed. Metals and Ceramics Information Center, vol. 24. Columbus: Batelle; 1972. 24.
[9]
Zurück zum Zitat Murray JL. Phase Diagrams of Binary Titanium Alloys. Materials Park: ASM International; 1987. 24. Murray JL. Phase Diagrams of Binary Titanium Alloys. Materials Park: ASM International; 1987. 24.
[10]
Zurück zum Zitat Jindrich J, Sreeramamurthy A, Harold M. Calculations of stress–strain curve and stress and strain distributions for an α-βTi–8Mn alloy. Mater Sci Eng. 1978;34(3):203.CrossRef Jindrich J, Sreeramamurthy A, Harold M. Calculations of stress–strain curve and stress and strain distributions for an α-βTi–8Mn alloy. Mater Sci Eng. 1978;34(3):203.CrossRef
[11]
Zurück zum Zitat Liao B, Zhang CL, Wu J, Cai DY, Zhao CM, Ren XJ, Yang QX. Numerical simulation of the stress–strain curve of duplex weathering steel. Mater Des. 2008;29(2):562.CrossRef Liao B, Zhang CL, Wu J, Cai DY, Zhao CM, Ren XJ, Yang QX. Numerical simulation of the stress–strain curve of duplex weathering steel. Mater Des. 2008;29(2):562.CrossRef
[12]
Zurück zum Zitat Dong HF, Jing L, Zhang Y, Joongkeun Park, Yang QX. Numerical simulation on the microstress and microstrain of low Si–Mn–Nb dual-phase steel. Int J Miner Metall Mater. 2010;17(2):173.CrossRef Dong HF, Jing L, Zhang Y, Joongkeun Park, Yang QX. Numerical simulation on the microstress and microstrain of low Si–Mn–Nb dual-phase steel. Int J Miner Metall Mater. 2010;17(2):173.CrossRef
[13]
Zurück zum Zitat Srinivasu G, Rao RN, Nandy TK, Gupta DK. Finite element modelling of α particle size on the stress strain curve of near beta Ti alloy. Mater Des. 2013;46(1):8.CrossRef Srinivasu G, Rao RN, Nandy TK, Gupta DK. Finite element modelling of α particle size on the stress strain curve of near beta Ti alloy. Mater Des. 2013;46(1):8.CrossRef
[14]
Zurück zum Zitat Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater Des. 2007;28(6):1747.CrossRef Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater Des. 2007;28(6):1747.CrossRef
[15]
Zurück zum Zitat Ozerdem MS, Kolukisa S. Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars. J Mater Process Technol. 2008;199(1–3):437.CrossRef Ozerdem MS, Kolukisa S. Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars. J Mater Process Technol. 2008;199(1–3):437.CrossRef
[16]
Zurück zum Zitat Malinov S, Sha W. Application of artificial neural networks for modelling correlations in titanium alloys. Mater Sci Eng A. 2004;365(1–2):202.CrossRef Malinov S, Sha W. Application of artificial neural networks for modelling correlations in titanium alloys. Mater Sci Eng A. 2004;365(1–2):202.CrossRef
[17]
Zurück zum Zitat Zhu YC, Zeng WD, Sun Y, Feng F, Zhou YG. Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Comput Mater Sci. 2011;50(5):1785.CrossRef Zhu YC, Zeng WD, Sun Y, Feng F, Zhou YG. Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Comput Mater Sci. 2011;50(5):1785.CrossRef
[18]
Zurück zum Zitat Haykin S. Neural Networks: a Comprehensive Foundation. Upper Saddle River: Prentice-Hall; 1999. 157. Haykin S. Neural Networks: a Comprehensive Foundation. Upper Saddle River: Prentice-Hall; 1999. 157.
[19]
Zurück zum Zitat Lippman RP. An introduction to computing with neural nets. IEEE ASSP Mag. 1987;4(2):4.CrossRef Lippman RP. An introduction to computing with neural nets. IEEE ASSP Mag. 1987;4(2):4.CrossRef
[20]
Zurück zum Zitat Negnevitsky M. Artificial Intelligence: a Guide to Intelligent Systems, vol. 452. Harlow: Addison Wesley; 2002. 452. Negnevitsky M. Artificial Intelligence: a Guide to Intelligent Systems, vol. 452. Harlow: Addison Wesley; 2002. 452.
Metadaten
Titel
Artificial neural network approach for prediction of stress–strain curve of near β titanium alloy
verfasst von
Srinivasu Gangi Setti
R. N. Rao
Publikationsdatum
01.06.2014
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2014
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-013-0182-2

Weitere Artikel der Ausgabe 3/2014

Rare Metals 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.