Skip to main content
Erschienen in: Rare Metals 12/2020

06.07.2014

Development of a LiFePO4-based high power lithium secondary battery for HEVs applications

verfasst von: Long-Zheng Deng, Feng Wu, Xu-Guang Gao, Wei-ping Wu

Erschienen in: Rare Metals | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A LiFePO4-type lithium secondary battery cell of 8 Ah capacity with a high energy density and power density was developed for hybrid electric vehicle (HEV) applications by optimizing the key raw materials and process design. The 8 Ah class LiFePO4 cell with an energy density of 77.2 Wh·kg−1 exhibits a power density of 2818 W·kg−1 at 50 % SOC (state of charge). The battery shows good cyclic capability with the capacity retention of 81.1 % after 1,870 cycles at 5C charge and 10C discharge rates. It is demonstrated that the cells have an excellent balance of high-power, high-energy, low temperature, and long-life performance for meeting the requirements of HEV.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Schiermeier, Tollefson J, Scully T, Witze A, Morton O. Titre du document/document title. Nature. 2008;454:816.CrossRef Schiermeier, Tollefson J, Scully T, Witze A, Morton O. Titre du document/document title. Nature. 2008;454:816.CrossRef
[2]
Zurück zum Zitat Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320. Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320.
[3]
Zurück zum Zitat Bi J, Shao S, Guan W, Wang L. State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network. Chin Phys B. 2012;21(11):118801.CrossRef Bi J, Shao S, Guan W, Wang L. State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network. Chin Phys B. 2012;21(11):118801.CrossRef
[4]
Zurück zum Zitat Zhao L, Pan HL, Hu YS, Li H, Chen LQ. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B. 2012;21(2):028201.CrossRef Zhao L, Pan HL, Hu YS, Li H, Chen LQ. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B. 2012;21(2):028201.CrossRef
[5]
Zurück zum Zitat Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc. 2009;156:A1041.CrossRef Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc. 2009;156:A1041.CrossRef
[6]
Zurück zum Zitat Zaghib K, Dontigny M, Cuerfi A, Charest P, Rodrigues I, Mauger A, Julien CM. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.CrossRef Zaghib K, Dontigny M, Cuerfi A, Charest P, Rodrigues I, Mauger A, Julien CM. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.CrossRef
[7]
Zurück zum Zitat Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.CrossRef
[8]
Zurück zum Zitat Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics. 2002;148(1–2):45.CrossRef Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics. 2002;148(1–2):45.CrossRef
[9]
Zurück zum Zitat Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc. 2005;152(3):A607.CrossRef Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc. 2005;152(3):A607.CrossRef
[10]
Zurück zum Zitat Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M. Electroactivity of natural and synthetic triphylite. J Power Sources. 2001;97–98:503.CrossRef Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M. Electroactivity of natural and synthetic triphylite. J Power Sources. 2001;97–98:503.CrossRef
[11]
Zurück zum Zitat Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J. Porous olivine composites synthesized by sol–gel technique. J Power Sources. 2006;153(2):274.CrossRef Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J. Porous olivine composites synthesized by sol–gel technique. J Power Sources. 2006;153(2):274.CrossRef
[12]
Zurück zum Zitat Delacourt C, Poizot P, Levasseur S, Masquelier C. Size effects on carbon-free LiFePO4 powders. Electrochem Solid-State Lett. 2006;9(7):A352.CrossRef Delacourt C, Poizot P, Levasseur S, Masquelier C. Size effects on carbon-free LiFePO4 powders. Electrochem Solid-State Lett. 2006;9(7):A352.CrossRef
[13]
Zurück zum Zitat Nan CY, Lu J, Chen C, Peng Q, Li YD. Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem. 2011;21(27):9994.CrossRef Nan CY, Lu J, Chen C, Peng Q, Li YD. Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem. 2011;21(27):9994.CrossRef
[14]
Zurück zum Zitat Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K, McLarnon F. In situ studies of SEI formation. J Power Sources. 2001;97–98:58.CrossRef Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K, McLarnon F. In situ studies of SEI formation. J Power Sources. 2001;97–98:58.CrossRef
[15]
Zurück zum Zitat Zheng T, Reimers JN, Dahn JR. Effect of turbostratic disorder in graphite carbon hosts on the intercalation of lithium. Phys Rev. 1995;B51(2):734.CrossRef Zheng T, Reimers JN, Dahn JR. Effect of turbostratic disorder in graphite carbon hosts on the intercalation of lithium. Phys Rev. 1995;B51(2):734.CrossRef
[16]
Zurück zum Zitat Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc. 1996;143(12):3809.CrossRef Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc. 1996;143(12):3809.CrossRef
[17]
Zurück zum Zitat Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochem Acta. 2002;47(9):1423.CrossRef Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochem Acta. 2002;47(9):1423.CrossRef
[18]
Zurück zum Zitat Zhang SSXuK, Allen JL, Jow TR. Effect of propylene carbonate oil on the low temperature performance of Li-ion cells. J Power Sources. 2002;110:216.CrossRef Zhang SSXuK, Allen JL, Jow TR. Effect of propylene carbonate oil on the low temperature performance of Li-ion cells. J Power Sources. 2002;110:216.CrossRef
[19]
Zurück zum Zitat Smart MC, Ratnakumar BV, Surampudi S, Wang Y, Zhang X, Greenbaum SG, Hightower A, Ahn CC, Fultz B. Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries. J Electrochem Soc. 1999;146(11):3963.CrossRef Smart MC, Ratnakumar BV, Surampudi S, Wang Y, Zhang X, Greenbaum SG, Hightower A, Ahn CC, Fultz B. Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries. J Electrochem Soc. 1999;146(11):3963.CrossRef
Metadaten
Titel
Development of a LiFePO4-based high power lithium secondary battery for HEVs applications
verfasst von
Long-Zheng Deng
Feng Wu
Xu-Guang Gao
Wei-ping Wu
Publikationsdatum
06.07.2014
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 12/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-014-0316-1

Weitere Artikel der Ausgabe 12/2020

Rare Metals 12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.