Skip to main content
Erschienen in: Rare Metals 4/2016

01.04.2016

Progress in application and preparation of silver nanowires

verfasst von: Xiong-Zhi Xiang, Wen-Ya Gong, Ming-Sheng Kuang, Lei Wang

Erschienen in: Rare Metals | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silver nanowires have attracted wide research attention for their excellent optical, electrical and chemical properties. Many researches were performed toward synthesizing and application of silver nanowires. The application of silver nanowires such as transparent conductive film electrode, conductive silver adhesive and nanowelding technology was introduced herein. Principles and characteristics of different synthesizing methods of silver nanowires were reviewed in this paper, including template method, liquid polyol method, self-assembly method, ultrasonic reduction method and wet chemical method. The liquid polyol method was the most available one to achieve efficient large-scale production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Zhang Z, Li J. Synthesis and characterization of silver nanoparticles by a sonochemical method. Rare Met Mater Eng. 2012;41(10):1700.CrossRef Zhang Z, Li J. Synthesis and characterization of silver nanoparticles by a sonochemical method. Rare Met Mater Eng. 2012;41(10):1700.CrossRef
[2]
Zurück zum Zitat Guan M, Shang T, He X, Sun J, Zhou Q, Gu P. Synthesis of silver nanoplates without agitation and surfactant. Rare Met Mater Eng. 2011;40(12):2069.CrossRef Guan M, Shang T, He X, Sun J, Zhou Q, Gu P. Synthesis of silver nanoplates without agitation and surfactant. Rare Met Mater Eng. 2011;40(12):2069.CrossRef
[3]
Zurück zum Zitat Jiang X, Yu A. Low dimensional silver nanostructures: synthesis, growth mechanism, properties and applications. J Nanosci Nanotechnol. 2010;10(12):7829.CrossRef Jiang X, Yu A. Low dimensional silver nanostructures: synthesis, growth mechanism, properties and applications. J Nanosci Nanotechnol. 2010;10(12):7829.CrossRef
[4]
Zurück zum Zitat Hu MJ, Gao JF, Dong YC, Yang SL, Li RKY. Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires. RSC Adv. 2012;2(5):2055.CrossRef Hu MJ, Gao JF, Dong YC, Yang SL, Li RKY. Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires. RSC Adv. 2012;2(5):2055.CrossRef
[5]
Zurück zum Zitat Shobin LR, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett. 2014;10(6):1027.CrossRef Shobin LR, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett. 2014;10(6):1027.CrossRef
[6]
Zurück zum Zitat Cheng D, Kim WY, Min SK, Nautiyal T, Kim KS. Magic structures and quantum conductance of 110 silver nanowires. Phys Rev Lett. 2006;96(9):096104.CrossRef Cheng D, Kim WY, Min SK, Nautiyal T, Kim KS. Magic structures and quantum conductance of 110 silver nanowires. Phys Rev Lett. 2006;96(9):096104.CrossRef
[7]
Zurück zum Zitat Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H. Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett. 2009;9(12):4383.CrossRef Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H. Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett. 2009;9(12):4383.CrossRef
[8]
Zurück zum Zitat Madaria AR, Kumar A, Zhou CW. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology. 2011;22(24):7.CrossRef Madaria AR, Kumar A, Zhou CW. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology. 2011;22(24):7.CrossRef
[9]
Zurück zum Zitat Li Y, Cui P, Wang L, Lee H, Lee K, Lee H. Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. ACS Appl Mater Interfaces. 2013;5(18):9155.CrossRef Li Y, Cui P, Wang L, Lee H, Lee K, Lee H. Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. ACS Appl Mater Interfaces. 2013;5(18):9155.CrossRef
[10]
Zurück zum Zitat Jose Andres L, Fe Menendez M, Gomez D, Luisa Martinez A, Bristow N, Paul Kettle J, Menendez A, Ruiz B. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology. 2015;26(26):265201.CrossRef Jose Andres L, Fe Menendez M, Gomez D, Luisa Martinez A, Bristow N, Paul Kettle J, Menendez A, Ruiz B. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology. 2015;26(26):265201.CrossRef
[11]
Zurück zum Zitat Oh MK, Shin YS, Lee CL, De R, Kang H, Yu NE, Kim BH, Kim JH. Morphological and SERS properties of silver nanorod array films fabricated by oblique thermal evaporation at various substrate temperatures. Nanoscale Res Lett. 2015;10(1):962.CrossRef Oh MK, Shin YS, Lee CL, De R, Kang H, Yu NE, Kim BH, Kim JH. Morphological and SERS properties of silver nanorod array films fabricated by oblique thermal evaporation at various substrate temperatures. Nanoscale Res Lett. 2015;10(1):962.CrossRef
[12]
Zurück zum Zitat Khlebtsov BN, Khanadeev VA, Maksimova IL, Terentyk GS, Khlebtsov NG. Silver nanocubes and gold nanocages: fabrication, optical and photothermal properties. Russ Nanotechnol. 2010;5(7–8):54. Khlebtsov BN, Khanadeev VA, Maksimova IL, Terentyk GS, Khlebtsov NG. Silver nanocubes and gold nanocages: fabrication, optical and photothermal properties. Russ Nanotechnol. 2010;5(7–8):54.
[13]
Zurück zum Zitat Xu G, Qiao X, Qiu X, Chen J. Progress in preparation of nano-silver. Materials Rev. 2010;24(11):139. Xu G, Qiao X, Qiu X, Chen J. Progress in preparation of nano-silver. Materials Rev. 2010;24(11):139.
[14]
Zurück zum Zitat Zhang Y, Wang J, Yang P. Convenient synthesis of Ag nanowires with tunable length and morphology. Mater Res Bull. 2013;48(2):461.CrossRef Zhang Y, Wang J, Yang P. Convenient synthesis of Ag nanowires with tunable length and morphology. Mater Res Bull. 2013;48(2):461.CrossRef
[15]
Zurück zum Zitat Zhu G, Chen DP. Solvothermal fabrication of uniform silver nanowires. J Mater Sci Mater Electron. 2012;23(11):2035.CrossRef Zhu G, Chen DP. Solvothermal fabrication of uniform silver nanowires. J Mater Sci Mater Electron. 2012;23(11):2035.CrossRef
[16]
Zurück zum Zitat Qu F, Zhang T, Gu HW, Qiu QQ, Ding FZ, Peng XY, Wang HY. Electrical and optical properties of ZnO: Al films with different hydrogen contents in sputtering gas. Rare Met. 2015;34(3):173.CrossRef Qu F, Zhang T, Gu HW, Qiu QQ, Ding FZ, Peng XY, Wang HY. Electrical and optical properties of ZnO: Al films with different hydrogen contents in sputtering gas. Rare Met. 2015;34(3):173.CrossRef
[17]
Zurück zum Zitat Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR. Transparent, conductive carbon nanotube films. Science. 2004;305(5688):1273.CrossRef Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR. Transparent, conductive carbon nanotube films. Science. 2004;305(5688):1273.CrossRef
[18]
Zurück zum Zitat Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu SE. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007;7(7):1888.CrossRef Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu SE. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007;7(7):1888.CrossRef
[19]
Zurück zum Zitat Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater. 2011;23(13):1482.CrossRef Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater. 2011;23(13):1482.CrossRef
[20]
Zurück zum Zitat Granqvist CG, Hultaker A. Transparent and conducting ITO films: new developments and applications. Thin Solid Films. 2002;411(1):1.CrossRef Granqvist CG, Hultaker A. Transparent and conducting ITO films: new developments and applications. Thin Solid Films. 2002;411(1):1.CrossRef
[21]
Zurück zum Zitat Harvey SP, Mason TO, Gassenbauer Y, Schafranek R, Klein A. Surface versus bulk electronic/defect structures of transparent conducting oxides: I. Indium oxide and ITO. J Phys D Appl Phys. 2006;39(18):3959.CrossRef Harvey SP, Mason TO, Gassenbauer Y, Schafranek R, Klein A. Surface versus bulk electronic/defect structures of transparent conducting oxides: I. Indium oxide and ITO. J Phys D Appl Phys. 2006;39(18):3959.CrossRef
[22]
Zurück zum Zitat Ren B, Liu X, Wang M, Xu Y. Preparation and characteristics of indium tin oxide (ITO) thin films at low temperature by r.f. magnetron sputtering. Rare Met. 2006;25(S):137.CrossRef Ren B, Liu X, Wang M, Xu Y. Preparation and characteristics of indium tin oxide (ITO) thin films at low temperature by r.f. magnetron sputtering. Rare Met. 2006;25(S):137.CrossRef
[23]
Zurück zum Zitat Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL. Ultrasmooth, Large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater. 2009;21(31):3210.CrossRef Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL. Ultrasmooth, Large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater. 2009;21(31):3210.CrossRef
[24]
Zurück zum Zitat Liu Y, Zhang J, Yan J, Du J, Gan G, Yi J. Direct electrodeposition of Fe–Ni alloy films on silicon substrate. Rare Met Mater Eng. 2014;43(12):2966.CrossRef Liu Y, Zhang J, Yan J, Du J, Gan G, Yi J. Direct electrodeposition of Fe–Ni alloy films on silicon substrate. Rare Met Mater Eng. 2014;43(12):2966.CrossRef
[25]
Zurück zum Zitat He WW, Ye CH. Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. J Mater Sci Technol. 2015;31(6):581.CrossRef He WW, Ye CH. Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. J Mater Sci Technol. 2015;31(6):581.CrossRef
[26]
Zurück zum Zitat Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong BH, Ahn JH, Lee TW. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics. 2012;6(2):105.CrossRef Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong BH, Ahn JH, Lee TW. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics. 2012;6(2):105.CrossRef
[27]
Zurück zum Zitat Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 2010;4(1):43.CrossRef Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 2010;4(1):43.CrossRef
[28]
Zurück zum Zitat Liu J, Wu G, Li S, Yu M, Yi J, Wu L. Comparative study on chemical stripping of titanium oxide films formed on titanium alloy. Rare Met Mater Eng. 2012;41(8):1331.CrossRef Liu J, Wu G, Li S, Yu M, Yi J, Wu L. Comparative study on chemical stripping of titanium oxide films formed on titanium alloy. Rare Met Mater Eng. 2012;41(8):1331.CrossRef
[29]
Zurück zum Zitat Zeng XY, Zhang QK, Yu RM, Lu CZ. A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv Mater. 2010;22(40):4484.CrossRef Zeng XY, Zhang QK, Yu RM, Lu CZ. A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv Mater. 2010;22(40):4484.CrossRef
[30]
Zurück zum Zitat Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater. 2011;23(5):664.CrossRef Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater. 2011;23(5):664.CrossRef
[31]
Zurück zum Zitat Li J, Liang J, Jian X, Hu W, Li J, Pei Q. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol Mater Eng. 2014;299(11):1403.CrossRef Li J, Liang J, Jian X, Hu W, Li J, Pei Q. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol Mater Eng. 2014;299(11):1403.CrossRef
[32]
Zurück zum Zitat Choi HO, Kim DW, Kim SJ, Yang SB, Jung HT. Role of 1D metallic nanowires in polydomain graphene for highly transparent conducting films. Adv Mater. 2014;26(26):4575.CrossRef Choi HO, Kim DW, Kim SJ, Yang SB, Jung HT. Role of 1D metallic nanowires in polydomain graphene for highly transparent conducting films. Adv Mater. 2014;26(26):4575.CrossRef
[33]
Zurück zum Zitat Ye SR, Rathmell AR, Chen ZF, Stewart IE, Wiley BJ. Metal nanowire networks: the next generation of transparent conductors. Adv Mater. 2014;26(39):6670.CrossRef Ye SR, Rathmell AR, Chen ZF, Stewart IE, Wiley BJ. Metal nanowire networks: the next generation of transparent conductors. Adv Mater. 2014;26(39):6670.CrossRef
[34]
Zurück zum Zitat Madaria AR, Kumar A, Ishikawa FN, Zhou CW. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010;3(8):564.CrossRef Madaria AR, Kumar A, Ishikawa FN, Zhou CW. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010;3(8):564.CrossRef
[35]
Zurück zum Zitat Lee HS, Kim YW, Kim JE, Yoon SW, Kim TY, Noh JS, Suh KS. Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films. Acta Mater. 2015;83:84.CrossRef Lee HS, Kim YW, Kim JE, Yoon SW, Kim TY, Noh JS, Suh KS. Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films. Acta Mater. 2015;83:84.CrossRef
[36]
Zurück zum Zitat Langley DP, Giusti G, Lagrange M, Collins R, Jimenez C, Brechet Y, Bellet D. Silver nanowire networks: physical properties and potential integration in solar cells. Solar Energy Mater Solar Cells. 2014;125(S):318.CrossRef Langley DP, Giusti G, Lagrange M, Collins R, Jimenez C, Brechet Y, Bellet D. Silver nanowire networks: physical properties and potential integration in solar cells. Solar Energy Mater Solar Cells. 2014;125(S):318.CrossRef
[37]
Zurück zum Zitat Ajuria J, Ugarte I, Cambarau W, Etxebarria I, Tena-Zaera R, Pacios R. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol Energy Mater Sol Cells. 2012;102:148.CrossRef Ajuria J, Ugarte I, Cambarau W, Etxebarria I, Tena-Zaera R, Pacios R. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol Energy Mater Sol Cells. 2012;102:148.CrossRef
[38]
Zurück zum Zitat Zhang Q, Vichchulada P, Lay MD. Length, bundle, and density gradients in spin cast single-walled carbon nanotube networks. J Phys Chem C. 2010;114(39):16292.CrossRef Zhang Q, Vichchulada P, Lay MD. Length, bundle, and density gradients in spin cast single-walled carbon nanotube networks. J Phys Chem C. 2010;114(39):16292.CrossRef
[39]
Zurück zum Zitat Guo X, Guo CW, Wang C, Li C, Sun XM. AlGaInP LED with low-speed spin-coating silver nanowires as transparent conductive layer. Nanoscale Res Lett. 2014;9(1):2495. Guo X, Guo CW, Wang C, Li C, Sun XM. AlGaInP LED with low-speed spin-coating silver nanowires as transparent conductive layer. Nanoscale Res Lett. 2014;9(1):2495.
[40]
Zurück zum Zitat Liu Y, Zhao X, Cai B, Pei T, Tong Y, Tang Q, Liu Y. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method. Nanoscale. 2014;6(3):1323.CrossRef Liu Y, Zhao X, Cai B, Pei T, Tong Y, Tang Q, Liu Y. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method. Nanoscale. 2014;6(3):1323.CrossRef
[41]
Zurück zum Zitat Hu L, Kim HS, Lee JY, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4(5):2955.CrossRef Hu L, Kim HS, Lee JY, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4(5):2955.CrossRef
[42]
Zurück zum Zitat Triambulo RE, Cheong H-G, Park J-W. All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics. Org Electron. 2014;15(11):2685.CrossRef Triambulo RE, Cheong H-G, Park J-W. All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics. Org Electron. 2014;15(11):2685.CrossRef
[43]
Zurück zum Zitat Lu YC, Chou KS. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology. 2010;21(21):2157.CrossRef Lu YC, Chou KS. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology. 2010;21(21):2157.CrossRef
[44]
Zurück zum Zitat Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. J Mater Sci Mater Electron. 2010;21(5):486.CrossRef Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. J Mater Sci Mater Electron. 2010;21(5):486.CrossRef
[45]
Zurück zum Zitat Luo SY, Wang N, Xu WC, Lv Y. Preparation and rheological behavior of lead free silver conducting paste. Mater Chem Phys. 2008;111(1):20.CrossRef Luo SY, Wang N, Xu WC, Lv Y. Preparation and rheological behavior of lead free silver conducting paste. Mater Chem Phys. 2008;111(1):20.CrossRef
[46]
Zurück zum Zitat Zhang X, Lei Y, Zhang Z, Qiu T. Preparation and conductivity of ultrafine silver conductive paste. Chin J Vac Sci Technol. 2014;34(11):1257. Zhang X, Lei Y, Zhang Z, Qiu T. Preparation and conductivity of ultrafine silver conductive paste. Chin J Vac Sci Technol. 2014;34(11):1257.
[47]
Zurück zum Zitat Lu Y, Huang JY, Wang C, Sun S, Lou J. Cold welding of ultrathin gold nanowires. Nat Nanotechnol. 2010;5(3):218.CrossRef Lu Y, Huang JY, Wang C, Sun S, Lou J. Cold welding of ultrathin gold nanowires. Nat Nanotechnol. 2010;5(3):218.CrossRef
[48]
Zurück zum Zitat Chen CX, Yan LJ, Kong ESW, Zhang YF. Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology. 2006;17(9):2192.CrossRef Chen CX, Yan LJ, Kong ESW, Zhang YF. Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology. 2006;17(9):2192.CrossRef
[49]
Zurück zum Zitat Zhao B, Chen C, Yadian B, Liu P, Lu Z, Xu D, Zhang Y. Effects of welding head on the carbon nanotube field emission in ultrasonic nanowelding. Thin Solid Films. 2009;517(6):2012.CrossRef Zhao B, Chen C, Yadian B, Liu P, Lu Z, Xu D, Zhang Y. Effects of welding head on the carbon nanotube field emission in ultrasonic nanowelding. Thin Solid Films. 2009;517(6):2012.CrossRef
[50]
Zurück zum Zitat Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Christoforo MG, Cui Y, Mcgehee MD, Brongersma ML. Self-limited plasmonic welding of silver nanowire junctions. Nat Mater. 2012;11(3):241.CrossRef Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Christoforo MG, Cui Y, Mcgehee MD, Brongersma ML. Self-limited plasmonic welding of silver nanowire junctions. Nat Mater. 2012;11(3):241.CrossRef
[51]
Zurück zum Zitat Giusti G, Langley DP, Lagrange M, Collins R, Jimenez C, Brechet Y. Thermal annealing effects on silver nanowire networks. Int J Nanotechnol. 2014;11(9–11):785.CrossRef Giusti G, Langley DP, Lagrange M, Collins R, Jimenez C, Brechet Y. Thermal annealing effects on silver nanowire networks. Int J Nanotechnol. 2014;11(9–11):785.CrossRef
[52]
Zurück zum Zitat Vafaei A, Hu A, Goldthorpe IA. Joining of individual silver nanowires via electrical current. Nano-Micro Lett. 2014;6(4):293–300.CrossRef Vafaei A, Hu A, Goldthorpe IA. Joining of individual silver nanowires via electrical current. Nano-Micro Lett. 2014;6(4):293–300.CrossRef
[53]
Zurück zum Zitat Ilie A, Crampin S, Karlsson L, Wilson M. Repair and stabilization in confined nanoscale systems-inorganic nanowires within single-walled carbon nanotubes. Nano Res. 2012;5(12):833.CrossRef Ilie A, Crampin S, Karlsson L, Wilson M. Repair and stabilization in confined nanoscale systems-inorganic nanowires within single-walled carbon nanotubes. Nano Res. 2012;5(12):833.CrossRef
[54]
Zurück zum Zitat Ahn KW, Lim JY, Yang JH, Kim SG. In situ growth of silver nanoparticles in mesoporous silica by spray pyrolysis. J Nanopart Res. 2010;12(7):2457.CrossRef Ahn KW, Lim JY, Yang JH, Kim SG. In situ growth of silver nanoparticles in mesoporous silica by spray pyrolysis. J Nanopart Res. 2010;12(7):2457.CrossRef
[55]
Zurück zum Zitat Sun XY, Xu FQ, Li ZM, Zhang WH. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template. Mater Chem Phys. 2005;90(1):69.CrossRef Sun XY, Xu FQ, Li ZM, Zhang WH. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template. Mater Chem Phys. 2005;90(1):69.CrossRef
[56]
Zurück zum Zitat Han YY, Cao L, Xu FQ, Qian K, Huang WX. Investigations on the thermal weight loss and the photoluminescence mechanism of AAO template. J Inorg Mater. 2012;27(3):305.CrossRef Han YY, Cao L, Xu FQ, Qian K, Huang WX. Investigations on the thermal weight loss and the photoluminescence mechanism of AAO template. J Inorg Mater. 2012;27(3):305.CrossRef
[57]
Zurück zum Zitat Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev. 2011;111(6):3736.CrossRef Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev. 2011;111(6):3736.CrossRef
[58]
Zurück zum Zitat Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS. Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Edit. 2009;48(21):3806.CrossRef Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS. Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Edit. 2009;48(21):3806.CrossRef
[59]
Zurück zum Zitat Sun YG, Mayers B, Herricks T, Xia YN. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 2003;3(7):955.CrossRef Sun YG, Mayers B, Herricks T, Xia YN. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 2003;3(7):955.CrossRef
[60]
Zurück zum Zitat Schuette WM, Buhro WE. Polyol synthesis of silver nanowires by heterogeneous nucleation; mechanistic aspects influencing nanowire diameter and length. Chem Mater. 2014;26(22):6410.CrossRef Schuette WM, Buhro WE. Polyol synthesis of silver nanowires by heterogeneous nucleation; mechanistic aspects influencing nanowire diameter and length. Chem Mater. 2014;26(22):6410.CrossRef
[61]
Zurück zum Zitat Yan G, Peng J, Li S, Liu LF, Yan X, Zhou Z, Liu D, Wang J. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. J Phys D (Appl Phys). 2005;38(7):1061.CrossRef Yan G, Peng J, Li S, Liu LF, Yan X, Zhou Z, Liu D, Wang J. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. J Phys D (Appl Phys). 2005;38(7):1061.CrossRef
[62]
Zurück zum Zitat Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater. 2002;14(11):4736.CrossRef Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater. 2002;14(11):4736.CrossRef
[63]
Zurück zum Zitat Tsuji M, Nishizawa Y, Matsumoto K, Miyamae N, Tsuji T, Zhang X. Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids Surf A Physicochem Eng Asp. 2007;293(1–3):185.CrossRef Tsuji M, Nishizawa Y, Matsumoto K, Miyamae N, Tsuji T, Zhang X. Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids Surf A Physicochem Eng Asp. 2007;293(1–3):185.CrossRef
[64]
Zurück zum Zitat Chen DP, Zhu G, Zhu XG, Qiao XL, Chen JG. Controlled synthesis of monodisperse silver nanocubes via a solvothermal method. J Mater Sci Mater Electron. 2011;22(12):1788.CrossRef Chen DP, Zhu G, Zhu XG, Qiao XL, Chen JG. Controlled synthesis of monodisperse silver nanocubes via a solvothermal method. J Mater Sci Mater Electron. 2011;22(12):1788.CrossRef
[65]
Zurück zum Zitat Wiley B, Sun YG, Xia YN. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir. 2005;21(18):8077.CrossRef Wiley B, Sun YG, Xia YN. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir. 2005;21(18):8077.CrossRef
[66]
Zurück zum Zitat Ma JJ, Zhan MS. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 2014;4(40):21060.CrossRef Ma JJ, Zhan MS. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 2014;4(40):21060.CrossRef
[67]
Zurück zum Zitat Lee JH, Lee P, Lee D, Lee SS, Ko SH. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des. 2012;12(11):5598.CrossRef Lee JH, Lee P, Lee D, Lee SS, Ko SH. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des. 2012;12(11):5598.CrossRef
[68]
Zurück zum Zitat Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater. 2012;24(25):3326.CrossRef Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater. 2012;24(25):3326.CrossRef
[69]
Zurück zum Zitat Liu SH, Sun BM, Li JG, Chen JL. Silver nanowires with rounded ends: ammonium carbonate-mediated polyol synthesis, shape evolution and growth mechanism. CrystEngComm. 2014;16(2):244.CrossRef Liu SH, Sun BM, Li JG, Chen JL. Silver nanowires with rounded ends: ammonium carbonate-mediated polyol synthesis, shape evolution and growth mechanism. CrystEngComm. 2014;16(2):244.CrossRef
[70]
Zurück zum Zitat Liu JH, Tsai CY, Chiu YH, Hsieh FM. The fabrication of polycrystalline silver nanowires via self-assembled nanotubesat controlled temperature. Nanotechnology. 2009;20(3):035301.CrossRef Liu JH, Tsai CY, Chiu YH, Hsieh FM. The fabrication of polycrystalline silver nanowires via self-assembled nanotubesat controlled temperature. Nanotechnology. 2009;20(3):035301.CrossRef
[71]
Zurück zum Zitat Liu JH, Hsieh FM. Fabrication of polycrystalline silver nanowires via reversed micelle with amphiphilic diblock copolymer and aluminum oxide template at controlled temperature. Polym Compos. 2010;31(8):1352. Liu JH, Hsieh FM. Fabrication of polycrystalline silver nanowires via reversed micelle with amphiphilic diblock copolymer and aluminum oxide template at controlled temperature. Polym Compos. 2010;31(8):1352.
[72]
Zurück zum Zitat Tsuji M, Matsumoto K, Jiang P, Matsuo R, Tang XL, Karnarudin KSN. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A Physicochem Eng Asp. 2008;316(1–3):266.CrossRef Tsuji M, Matsumoto K, Jiang P, Matsuo R, Tang XL, Karnarudin KSN. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A Physicochem Eng Asp. 2008;316(1–3):266.CrossRef
[73]
Zurück zum Zitat Yang Y, Hu YY, Xiong XH, Qin YZ. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv. 2013;3(22):8431.CrossRef Yang Y, Hu YY, Xiong XH, Qin YZ. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv. 2013;3(22):8431.CrossRef
[74]
Zurück zum Zitat Ju WG, Zhang XH, Wu SK. Wet chemical synthesis of Ag nanowires array at room temperature. Chem Lett. 2005;34(4):510.CrossRef Ju WG, Zhang XH, Wu SK. Wet chemical synthesis of Ag nanowires array at room temperature. Chem Lett. 2005;34(4):510.CrossRef
[75]
Zurück zum Zitat Maddanimath T, Kumar A, D’Arcy-Gall J, Ganesan PG, Vijayamohanan K, Ramanath G. Wet-chemical templateless assembly of metal nanowires from nanoparticles. Chem Commun. 2005;11:1435.CrossRef Maddanimath T, Kumar A, D’Arcy-Gall J, Ganesan PG, Vijayamohanan K, Ramanath G. Wet-chemical templateless assembly of metal nanowires from nanoparticles. Chem Commun. 2005;11:1435.CrossRef
[76]
Zurück zum Zitat Chen M, Wang C, Wei X, Diao G. Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering. J Phys Chem C. 2013;117(26):13593.CrossRef Chen M, Wang C, Wei X, Diao G. Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering. J Phys Chem C. 2013;117(26):13593.CrossRef
[77]
Zurück zum Zitat Ngoc-Thang N, Liu JH. Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel. Sci Adv Mater. 2015;7(7):1282.CrossRef Ngoc-Thang N, Liu JH. Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel. Sci Adv Mater. 2015;7(7):1282.CrossRef
Metadaten
Titel
Progress in application and preparation of silver nanowires
verfasst von
Xiong-Zhi Xiang
Wen-Ya Gong
Ming-Sheng Kuang
Lei Wang
Publikationsdatum
01.04.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2016
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0695-6

Weitere Artikel der Ausgabe 4/2016

Rare Metals 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.