Skip to main content
Erschienen in: Rare Metals 9/2016

01.09.2016

Biomedical titanium alloys and their additive manufacturing

verfasst von: Yu-Lin Hao, Shu-Jun Li, Rui Yang

Erschienen in: Rare Metals | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys. A brief review on the development of the β-type titanium alloys with high strength and low elastic modulus is given, and the use of additive manufacturing technologies to produce porous titanium alloy parts, using Ti–6Al–4V as a reference, and its potential in fabricating biomedical replacements are discussed in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621.CrossRef Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621.CrossRef
[2]
Zurück zum Zitat Liu Y, Zhao X, Zhang LC, Habibi D, Xie Z. Architectural design of diamond-like carbon coatings for long-lasting joint replacements. Mater Sci Eng C. 2013;33(5):2788.CrossRef Liu Y, Zhao X, Zhang LC, Habibi D, Xie Z. Architectural design of diamond-like carbon coatings for long-lasting joint replacements. Mater Sci Eng C. 2013;33(5):2788.CrossRef
[3]
Zurück zum Zitat Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.CrossRef Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.CrossRef
[4]
Zurück zum Zitat Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2012;20(4):407. Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2012;20(4):407.
[5]
Zurück zum Zitat Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg. 2007;89(4):780.CrossRef Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg. 2007;89(4):780.CrossRef
[6]
Zurück zum Zitat Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention—a review. Recent Patents Corrosion Sci. 2010;2:40.CrossRef Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention—a review. Recent Patents Corrosion Sci. 2010;2:40.CrossRef
[7]
Zurück zum Zitat Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res. 1987;21(12):1395.CrossRef Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res. 1987;21(12):1395.CrossRef
[8]
Zurück zum Zitat Fox SC, Moriarty JD, Kusy RP. The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol. 1990;61(8):485.CrossRef Fox SC, Moriarty JD, Kusy RP. The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol. 1990;61(8):485.CrossRef
[9]
Zurück zum Zitat Pearce A, Richards R, Milz S, Schneider E, Pearce S. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13(1):1. Pearce A, Richards R, Milz S, Schneider E, Pearce S. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13(1):1.
[10]
Zurück zum Zitat Biemond J, Hannink G, Verdonschot N, Buma P. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. J Mater Sci Mater Med. 2013;24(3):745.CrossRef Biemond J, Hannink G, Verdonschot N, Buma P. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. J Mater Sci Mater Med. 2013;24(3):745.CrossRef
[11]
Zurück zum Zitat De Wild M, Schumacher R, Mayer K, Schkommodau E, Thoma D, Bredell M, Kruse Gujer A, Grätz KW, Weber FE. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Eng Part A. 2013;19(23–24):2645.CrossRef De Wild M, Schumacher R, Mayer K, Schkommodau E, Thoma D, Bredell M, Kruse Gujer A, Grätz KW, Weber FE. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Eng Part A. 2013;19(23–24):2645.CrossRef
[12]
Zurück zum Zitat Murr L, Amato K, Li S, Tian Y, Cheng X, Gaytan S, Martinez E, Shindo P, Medina F, Wicker R. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 2011;4(7):1396.CrossRef Murr L, Amato K, Li S, Tian Y, Cheng X, Gaytan S, Martinez E, Shindo P, Medina F, Wicker R. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 2011;4(7):1396.CrossRef
[13]
Zurück zum Zitat Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implant Res. 2008;19(2):119.CrossRef Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implant Res. 2008;19(2):119.CrossRef
[14]
Zurück zum Zitat Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol. 2002;29(S3):197.CrossRef Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol. 2002;29(S3):197.CrossRef
[15]
Zurück zum Zitat Attar H, Prashanth K, Chaubey A, Calin M, Zhang LC, Scudino S, Eckert J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142(1):38.CrossRef Attar H, Prashanth K, Chaubey A, Calin M, Zhang LC, Scudino S, Eckert J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142(1):38.CrossRef
[16]
Zurück zum Zitat Helsen JA, Jürgen Breme H. Metals as Biomaterials. Berlin: Wiley; 1998. 522. Helsen JA, Jürgen Breme H. Metals as Biomaterials. Berlin: Wiley; 1998. 522.
[17]
Zurück zum Zitat Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993;43(3):245. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993;43(3):245.
[18]
Zurück zum Zitat Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996;27(6):401. Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996;27(6):401.
[19]
Zurück zum Zitat Davidson J, Mishra A, Kovacs P, Poggie R. New surface-hardened, low-modulus, corrosion-resistant Ti–13Nb–13Zr alloy for total hip arthroplasty. Bio-Med Mater Eng. 1993;4(3):231. Davidson J, Mishra A, Kovacs P, Poggie R. New surface-hardened, low-modulus, corrosion-resistant Ti–13Nb–13Zr alloy for total hip arthroplasty. Bio-Med Mater Eng. 1993;4(3):231.
[20]
Zurück zum Zitat Hao Y, Li S, Prima F, Yang R. Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus. Scr Mater. 2012;67(5):487.CrossRef Hao Y, Li S, Prima F, Yang R. Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus. Scr Mater. 2012;67(5):487.CrossRef
[21]
Zurück zum Zitat Hao Y, Li S, Sun S, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1):112.CrossRef Hao Y, Li S, Sun S, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1):112.CrossRef
[22]
Zurück zum Zitat Hao Y, Li S, Sun S, Zheng C, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.CrossRef Hao Y, Li S, Sun S, Zheng C, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.CrossRef
[23]
Zurück zum Zitat Rack H, Qazi J. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269.CrossRef Rack H, Qazi J. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269.CrossRef
[24]
Zurück zum Zitat Karpat Y. Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining. J Mater Process Technol. 2011;211(4):737.CrossRef Karpat Y. Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining. J Mater Process Technol. 2011;211(4):737.CrossRef
[25]
Zurück zum Zitat Filiaggi M, Coombs N, Pilliar R. Characterization of the interface in the plasma-sprayed HA coating/Ti–6Al–4V implant system. J Biomed Mater Res. 1991;25(10):1211.CrossRef Filiaggi M, Coombs N, Pilliar R. Characterization of the interface in the plasma-sprayed HA coating/Ti–6Al–4V implant system. J Biomed Mater Res. 1991;25(10):1211.CrossRef
[26]
Zurück zum Zitat El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti–6Al–4V implant material in vitro. J Biomed Mater Res. 1998;41(1):30.CrossRef El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti–6Al–4V implant material in vitro. J Biomed Mater Res. 1998;41(1):30.CrossRef
[27]
Zurück zum Zitat Haghighi SE, Lu H, Jian G, Cao G, Habibi D, Zhang LC. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater Des. 2015;76(1):47.CrossRef Haghighi SE, Lu H, Jian G, Cao G, Habibi D, Zhang LC. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater Des. 2015;76(1):47.CrossRef
[28]
Zurück zum Zitat Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65(1):21.CrossRef Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65(1):21.CrossRef
[29]
Zurück zum Zitat Engh C, Bobyn J, Glassman A. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg. 1987;69(1):45. Engh C, Bobyn J, Glassman A. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg. 1987;69(1):45.
[30]
Zurück zum Zitat Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;274:124. Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;274:124.
[31]
Zurück zum Zitat Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg Spine. 2000;93(2):259.CrossRef Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg Spine. 2000;93(2):259.CrossRef
[32]
Zurück zum Zitat Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474.CrossRef Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474.CrossRef
[33]
Zurück zum Zitat Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27(13):2651.CrossRef Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27(13):2651.CrossRef
[34]
Zurück zum Zitat Attar H, Prashanth KG, Zhang LC, Calin M, Okulov IV, Scudino S, Yang C, Eckert J. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol. 2015;31(10):1001.CrossRef Attar H, Prashanth KG, Zhang LC, Calin M, Okulov IV, Scudino S, Yang C, Eckert J. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol. 2015;31(10):1001.CrossRef
[35]
Zurück zum Zitat Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, Hernandez D, Martinez E, Medina F, Wicker R. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20.CrossRef Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, Hernandez D, Martinez E, Medina F, Wicker R. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20.CrossRef
[36]
Zurück zum Zitat Li S, Murr L, Cheng X, Zhang Z, Hao Y, Yang R, Medina F, Wicker R. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012;60(3):793.CrossRef Li S, Murr L, Cheng X, Zhang Z, Hao Y, Yang R, Medina F, Wicker R. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012;60(3):793.CrossRef
[37]
Zurück zum Zitat Zhang LC, Sercombe T. Selective laser melting of low-modulus biomedical Ti–24Nb–4Zr–8Sn alloy: effect of laser point distance. Key Eng Mater. 2012;520:226.CrossRef Zhang LC, Sercombe T. Selective laser melting of low-modulus biomedical Ti–24Nb–4Zr–8Sn alloy: effect of laser point distance. Key Eng Mater. 2012;520:226.CrossRef
[38]
Zurück zum Zitat Hernandez J, Li S, Martinez E, Murr L, Pan X, Amato K, Cheng X, Yang F, Terrazas C, Gaytan S. Microstructures and hardness properties for β-phase Ti–24Nb–4Zr–7.9Sn alloy fabricated by electron beam melting. J Mater Sci Technol. 2013;29(11):1011.CrossRef Hernandez J, Li S, Martinez E, Murr L, Pan X, Amato K, Cheng X, Yang F, Terrazas C, Gaytan S. Microstructures and hardness properties for β-phase Ti–24Nb–4Zr–7.9Sn alloy fabricated by electron beam melting. J Mater Sci Technol. 2013;29(11):1011.CrossRef
[39]
Zurück zum Zitat Attar H, Calin M, Zhang LC, Scudino S, Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A. 2014;593:170.CrossRef Attar H, Calin M, Zhang LC, Scudino S, Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A. 2014;593:170.CrossRef
[40]
Zurück zum Zitat Liu YJ, Li X, Zhang LC, Sercombe T. Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Mater Sci Eng A. 2015;642:268.CrossRef Liu YJ, Li X, Zhang LC, Sercombe T. Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Mater Sci Eng A. 2015;642:268.CrossRef
[41]
Zurück zum Zitat Senkov O, Froes F. Thermohydrogen processing of titanium alloys. Int J Hydrogen Energy. 1999;24(6):565.CrossRef Senkov O, Froes F. Thermohydrogen processing of titanium alloys. Int J Hydrogen Energy. 1999;24(6):565.CrossRef
[42]
Zurück zum Zitat Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Berlin: Wiley; 2003. 1.CrossRef Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Berlin: Wiley; 2003. 1.CrossRef
[43]
Zurück zum Zitat Zhang LC, Shen ZQ, Xu J. Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater Sci Eng A. 2005;394(1–2):204.CrossRef Zhang LC, Shen ZQ, Xu J. Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater Sci Eng A. 2005;394(1–2):204.CrossRef
[44]
Zurück zum Zitat Lu HB, Poh CK, Zhang LC, Guo ZP, Yu XB, Liu HK. Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. J Alloys Compd. 2009;481(1):152.CrossRef Lu HB, Poh CK, Zhang LC, Guo ZP, Yu XB, Liu HK. Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. J Alloys Compd. 2009;481(1):152.CrossRef
[45]
Zurück zum Zitat Zhang LC, Das J, Lu H, Duhamel C, Calin M, Eckert J. High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr Mater. 2007;57(2):101.CrossRef Zhang LC, Das J, Lu H, Duhamel C, Calin M, Eckert J. High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr Mater. 2007;57(2):101.CrossRef
[46]
Zurück zum Zitat Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26(1):11.CrossRef Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26(1):11.CrossRef
[47]
Zurück zum Zitat Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292.CrossRef Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292.CrossRef
[48]
Zurück zum Zitat Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.CrossRef Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.CrossRef
[49]
Zurück zum Zitat Guo Z, Fu J, Zhang Y, Hu Y, Wu Z, Shi L, Sha M, Li S, Hao Y, Yang R. Early effect of Ti–24Nb–4Zr–7.9Sn intramedullary nails on fractured bone. Mater Sci Eng C. 2009;29:963.CrossRef Guo Z, Fu J, Zhang Y, Hu Y, Wu Z, Shi L, Sha M, Li S, Hao Y, Yang R. Early effect of Ti–24Nb–4Zr–7.9Sn intramedullary nails on fractured bone. Mater Sci Eng C. 2009;29:963.CrossRef
[50]
Zurück zum Zitat Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369.CrossRef Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369.CrossRef
[51]
Zurück zum Zitat Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys. Mater Technol Adv Perform Mater. 2016;31(2):90. Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys. Mater Technol Adv Perform Mater. 2016;31(2):90.
[52]
Zurück zum Zitat Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26.CrossRef Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26.CrossRef
[53]
Zurück zum Zitat Attar H, Bönisch M, Calin M, Zhang LC, Scudino S, Eckert J. Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 2014;76(9):13.CrossRef Attar H, Bönisch M, Calin M, Zhang LC, Scudino S, Eckert J. Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 2014;76(9):13.CrossRef
[54]
Zurück zum Zitat Wang X, Zhang LC, Fang M, Sercombe TB. The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mater Sci Eng A. 2014;597:370.CrossRef Wang X, Zhang LC, Fang M, Sercombe TB. The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mater Sci Eng A. 2014;597:370.CrossRef
[55]
Zurück zum Zitat Chua CK, Leong KF. 3D printing and additive manufacturing: principles and applications. Singapore: Nanyang Technological University; 2014. 23.CrossRef Chua CK, Leong KF. 3D printing and additive manufacturing: principles and applications. Singapore: Nanyang Technological University; 2014. 23.CrossRef
[56]
Zurück zum Zitat Liu ZH, Zhang DQ, Chua CK, Leong KF. Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater Charact. 2013;84(10):72.CrossRef Liu ZH, Zhang DQ, Chua CK, Leong KF. Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater Charact. 2013;84(10):72.CrossRef
[57]
Zurück zum Zitat Ramirez DA, Murr LE, Martinez E, Hernandez DH, Martinez JL, Machado BI, Medina F, Frigola P, Wicker RB. Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 2011;59(10):4088.CrossRef Ramirez DA, Murr LE, Martinez E, Hernandez DH, Martinez JL, Machado BI, Medina F, Frigola P, Wicker RB. Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 2011;59(10):4088.CrossRef
[58]
Zurück zum Zitat Sun SH, Koizumi Y, Kurosu S, Li YP, Chiba A. Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Mater. 2014;86:305.CrossRef Sun SH, Koizumi Y, Kurosu S, Li YP, Chiba A. Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Mater. 2014;86:305.CrossRef
[59]
Zurück zum Zitat Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC, Liu YJ, Fang MH, Huang ZH, Sercombe TB. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25 % tensile ductility. Acta Mater. 2015;95:74.CrossRef Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC, Liu YJ, Fang MH, Huang ZH, Sercombe TB. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25 % tensile ductility. Acta Mater. 2015;95:74.CrossRef
[60]
Zurück zum Zitat Gu D, Hagedorn YC, Meiners W, Meng G, Rui JSB, Wissenbach K, Poprawe R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012;60(9):3849.CrossRef Gu D, Hagedorn YC, Meiners W, Meng G, Rui JSB, Wissenbach K, Poprawe R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012;60(9):3849.CrossRef
[61]
Zurück zum Zitat Prashanth K, Scudino S, Klauss H, Surreddi KB, Löber L, Wang Z, Chaubey A, Kühn U, Eckert J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A. 2014;590:153.CrossRef Prashanth K, Scudino S, Klauss H, Surreddi KB, Löber L, Wang Z, Chaubey A, Kühn U, Eckert J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A. 2014;590:153.CrossRef
[62]
Zurück zum Zitat Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303.CrossRef Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303.CrossRef
[63]
Zurück zum Zitat Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2006;13(4):196.CrossRef Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2006;13(4):196.CrossRef
[64]
Zurück zum Zitat Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A. 2006;428(1):148.CrossRef Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A. 2006;428(1):148.CrossRef
[65]
Zurück zum Zitat Kruth JP, Froyen L, Vaerenbergh JV, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. J Mater Process Technol. 2004;149(1–3):616.CrossRef Kruth JP, Froyen L, Vaerenbergh JV, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. J Mater Process Technol. 2004;149(1–3):616.CrossRef
[66]
Zurück zum Zitat Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol. 2014;214(11):2522.CrossRef Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol. 2014;214(11):2522.CrossRef
[67]
Zurück zum Zitat Gu D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133.CrossRef Gu D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133.CrossRef
[68]
Zurück zum Zitat Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci. 2007;253(19):8064.CrossRef Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci. 2007;253(19):8064.CrossRef
[69]
Zurück zum Zitat Panwisawas C, Qiu C, Sovani Y, Brooks J, Attallah M, Basoalto H. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr Mater. 2015;105:14.CrossRef Panwisawas C, Qiu C, Sovani Y, Brooks J, Attallah M, Basoalto H. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr Mater. 2015;105:14.CrossRef
[70]
Zurück zum Zitat Zhang LC, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater. 2016;18(4):463.CrossRef Zhang LC, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater. 2016;18(4):463.CrossRef
[71]
Zurück zum Zitat Facchini L, Magalini E, Robotti P, Molinari A, Höges S, Wissenbach K. Ductility of a Ti–6Al–4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J. 2010;16(6):450.CrossRef Facchini L, Magalini E, Robotti P, Molinari A, Höges S, Wissenbach K. Ductility of a Ti–6Al–4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J. 2010;16(6):450.CrossRef
[72]
Zurück zum Zitat Marcu T, Todea M, Gligor I, Berce P, Popa C. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci. 2012;258(7):3276.CrossRef Marcu T, Todea M, Gligor I, Berce P, Popa C. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci. 2012;258(7):3276.CrossRef
[73]
Zurück zum Zitat Speirs M, Humbeeck JV, Schrooten J, Luyten J, Kruth J. The effect of pore geometry on the mechanical properties of selective laser melted Ti–13Nb–13Zr scaffolds. Proc CIRP. 2013;5:79.CrossRef Speirs M, Humbeeck JV, Schrooten J, Luyten J, Kruth J. The effect of pore geometry on the mechanical properties of selective laser melted Ti–13Nb–13Zr scaffolds. Proc CIRP. 2013;5:79.CrossRef
[74]
Zurück zum Zitat Cronskär M, Bäckström M, Rännar LE. Production of customized hip stem prostheses—a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyp J. 2013;19(5):365.CrossRef Cronskär M, Bäckström M, Rännar LE. Production of customized hip stem prostheses—a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyp J. 2013;19(5):365.CrossRef
[75]
Zurück zum Zitat Mazzoli A, Germani M, Raffaeli R. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater Des. 2009;30(8):3186.CrossRef Mazzoli A, Germani M, Raffaeli R. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater Des. 2009;30(8):3186.CrossRef
[76]
Zurück zum Zitat Jardini AL, Larosa MA, Maciel Filho R, de Carvalho Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillofac Surg. 2014;42(8):1877.CrossRef Jardini AL, Larosa MA, Maciel Filho R, de Carvalho Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillofac Surg. 2014;42(8):1877.CrossRef
[77]
Zurück zum Zitat Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536.CrossRef Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536.CrossRef
[78]
Zurück zum Zitat Facchini L, Magalini E, Robotti P, Molinari A. Microstructure and mechanical properties of Ti–6Al–4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J. 2009;15(3):171.CrossRef Facchini L, Magalini E, Robotti P, Molinari A. Microstructure and mechanical properties of Ti–6Al–4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J. 2009;15(3):171.CrossRef
[79]
Zurück zum Zitat Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T. Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A. 2008;492(1):468.CrossRef Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T. Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A. 2008;492(1):468.CrossRef
[80]
Zurück zum Zitat Ponader S, Von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Körner C, Singer RF, Nkenke E, Neukam FW, Schlegel KA. In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J Biomed Mater Res Part A. 2010;92(1):56.CrossRef Ponader S, Von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Körner C, Singer RF, Nkenke E, Neukam FW, Schlegel KA. In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J Biomed Mater Res Part A. 2010;92(1):56.CrossRef
[81]
Zurück zum Zitat Al-Bermani S, Blackmore M, Zhang W, Todd I. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metallurg Mater Trans A. 2010;41(13):3422.CrossRef Al-Bermani S, Blackmore M, Zhang W, Todd I. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metallurg Mater Trans A. 2010;41(13):3422.CrossRef
[82]
Zurück zum Zitat Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 2: energy input, orientation, and location. Mater Sci Eng A. 2013;573:271.CrossRef Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 2: energy input, orientation, and location. Mater Sci Eng A. 2013;573:271.CrossRef
[83]
Zurück zum Zitat Zhe W, Jun Z, Shujun L, Wentao H, Yulin H, Rui Y. Effects of part size on microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting. Rare Metal Mater Eng. 2014;43:161. Zhe W, Jun Z, Shujun L, Wentao H, Yulin H, Rui Y. Effects of part size on microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting. Rare Metal Mater Eng. 2014;43:161.
[84]
Zurück zum Zitat Rafi HK, Starr TL, Stucker BE. A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol. 2013;69(5–8):1299.CrossRef Rafi HK, Starr TL, Stucker BE. A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol. 2013;69(5–8):1299.CrossRef
[85]
Zurück zum Zitat Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti–6Al–4V powder fractions. J Mater Process Technol. 2013;213(12):2109.CrossRef Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti–6Al–4V powder fractions. J Mater Process Technol. 2013;213(12):2109.CrossRef
[86]
Zurück zum Zitat Qiu C, Adkins NJ, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A. 2013;578:230.CrossRef Qiu C, Adkins NJ, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A. 2013;578:230.CrossRef
[87]
Zurück zum Zitat Song B, Dong S, Zhang B, Liao H, Coddet C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Des. 2012;35(3):120.CrossRef Song B, Dong S, Zhang B, Liao H, Coddet C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Des. 2012;35(3):120.CrossRef
[88]
Zurück zum Zitat Zhao XL, Li SJ, Zhang M, Liu YD, Sercombe TB, Wang SG, Hao YL, Yang R, Murr E. Comparison of microstructures and mechanical properties for Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. Mater Des. 2016;95:21. Zhao XL, Li SJ, Zhang M, Liu YD, Sercombe TB, Wang SG, Hao YL, Yang R, Murr E. Comparison of microstructures and mechanical properties for Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. Mater Des. 2016;95:21.
[89]
Zurück zum Zitat Ehtemam-Haghighi S, Liu Y, Cao G, Zhang LC. Influence of Nb on the β → α″ martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater Sci Eng C. 2015;60:503.CrossRef Ehtemam-Haghighi S, Liu Y, Cao G, Zhang LC. Influence of Nb on the β → α″ martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater Sci Eng C. 2015;60:503.CrossRef
[90]
Zurück zum Zitat Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng A. 2014;598:327.CrossRef Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng A. 2014;598:327.CrossRef
[91]
Zurück zum Zitat Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard H, Maier H. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300.CrossRef Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard H, Maier H. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300.CrossRef
[92]
Zurück zum Zitat Cain V, Thijs L, Van Humbeeck J, Van Hooreweder B, Knutsen R. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit Manuf. 2015;5:68.CrossRef Cain V, Thijs L, Van Humbeeck J, Van Hooreweder B, Knutsen R. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit Manuf. 2015;5:68.CrossRef
[93]
Zurück zum Zitat Heinl P, Rottmair A, Körner C, Singer RF. Cellular titanium by selective electron beam melting. Adv Eng Mater. 2007;9(5):360.CrossRef Heinl P, Rottmair A, Körner C, Singer RF. Cellular titanium by selective electron beam melting. Adv Eng Mater. 2007;9(5):360.CrossRef
[94]
Zurück zum Zitat Murr L, Gaytan S, Medina F, Lopez H, Martinez E, Machado B, Hernandez D, Martinez L, Lopez M, Wicker R. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc Lond A Math Phys Eng Sci. 1999;2010(368):1917. Murr L, Gaytan S, Medina F, Lopez H, Martinez E, Machado B, Hernandez D, Martinez L, Lopez M, Wicker R. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc Lond A Math Phys Eng Sci. 1999;2010(368):1917.
[95]
Zurück zum Zitat Sallica-Leva E, Jardini A, Fogagnolo J. Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting. J Mech Behav Biomed Mater. 2013;26:98.CrossRef Sallica-Leva E, Jardini A, Fogagnolo J. Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting. J Mech Behav Biomed Mater. 2013;26:98.CrossRef
[96]
Zurück zum Zitat Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A. 2011;528(24):7423.CrossRef Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A. 2011;528(24):7423.CrossRef
[97]
Zurück zum Zitat Zhang S, Wei Q, Cheng L, Li S, Shi Y. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des. 2014;63:185.CrossRef Zhang S, Wei Q, Cheng L, Li S, Shi Y. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des. 2014;63:185.CrossRef
[98]
Zurück zum Zitat Sun J, Yang Y, Wang D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater Des. 2013;49:545.CrossRef Sun J, Yang Y, Wang D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater Des. 2013;49:545.CrossRef
[99]
Zurück zum Zitat Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr L. Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537.CrossRef Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr L. Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537.CrossRef
[100]
Zurück zum Zitat Yavari SA, Ahmadi S, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor A. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater. 2015;43:91.CrossRef Yavari SA, Ahmadi S, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor A. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater. 2015;43:91.CrossRef
[101]
Zurück zum Zitat Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng Part C Methods. 2008;15(2):115.CrossRef Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng Part C Methods. 2008;15(2):115.CrossRef
[102]
Zurück zum Zitat Li X, Wang C, Zhang W, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett. 2009;63(3):403.CrossRef Li X, Wang C, Zhang W, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett. 2009;63(3):403.CrossRef
[103]
Zurück zum Zitat Wu SH, Li Y, Zhang YQ, Li XK, Yuan CF, Hao YL, Zhang ZY, Guo Z. Porous titanium–6 aluminum–4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs. 2013;37(12):E191.CrossRef Wu SH, Li Y, Zhang YQ, Li XK, Yuan CF, Hao YL, Zhang ZY, Guo Z. Porous titanium–6 aluminum–4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs. 2013;37(12):E191.CrossRef
[104]
Zurück zum Zitat Li XK, Yuan CF, Wang JL, Zhang YQ, Zhang ZY, Guo Z. The treatment effect of porous titanium alloy rod on the early stage talar osteonecrosis of sheep. PLoS One. 2013;8(3):58459.CrossRef Li XK, Yuan CF, Wang JL, Zhang YQ, Zhang ZY, Guo Z. The treatment effect of porous titanium alloy rod on the early stage talar osteonecrosis of sheep. PLoS One. 2013;8(3):58459.CrossRef
Metadaten
Titel
Biomedical titanium alloys and their additive manufacturing
verfasst von
Yu-Lin Hao
Shu-Jun Li
Rui Yang
Publikationsdatum
01.09.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2016
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0793-5

Weitere Artikel der Ausgabe 9/2016

Rare Metals 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.