Skip to main content
Erschienen in: Rare Metals 4/2017

08.02.2017

Tensile properties and fractographs of Ti–2.5Al–1.5Mn foils at different temperatures

verfasst von: Zhen-Wu Ma, Guo-Quan Tong, Feng Chen

Erschienen in: Rare Metals | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The tensile properties and fractographs of Ti–2.5Al–1.5Mn foils at different temperatures were investigated. It is observed that material properties closely correlate with the thickness (T) to grain size (d) ratio and deformation temperature. Tensile analysis shows that local deformation is the main deformation feature in foils forming at room temperature, which may lead to premature fracture. The causes of inhomogeneous deformation behavior are the limited number of deformable grains contained in deformation zone and the weak transferability of hardening among different grains. Fracture analysis reveals that the size of dimples can represent the ductility of foils at room temperature. With the further increase of deformation temperature, the main plastic deformation mode of foils is transformed from intragranular dislocations and twin crystal to grain-boundary gliding and rolling. In conclusion, foil forming at elevated temperature can increase the hardening transferability and the number of deformable grains in deformation zone, which is an effective method to improve the formability and reduce the scatter of material properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Engel U, Eckstein R. Micro-forming—from basic research to its realization. J Mater Process Technol. 2002;125(2):35.CrossRef Engel U, Eckstein R. Micro-forming—from basic research to its realization. J Mater Process Technol. 2002;125(2):35.CrossRef
[2]
Zurück zum Zitat Vollertsen F, Hu Z, Niehoff HS, Theiler C. State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol. 2004;151(1):70.CrossRef Vollertsen F, Hu Z, Niehoff HS, Theiler C. State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol. 2004;151(1):70.CrossRef
[3]
Zurück zum Zitat Cheng LD, Wang CJ, Wang CJ, Guo B, Wang ZL. Size effects on plastic deformation behavior in micro radial compression of pure copper. T Nonferr Metal Soc. 2013;23(9):2686.CrossRef Cheng LD, Wang CJ, Wang CJ, Guo B, Wang ZL. Size effects on plastic deformation behavior in micro radial compression of pure copper. T Nonferr Metal Soc. 2013;23(9):2686.CrossRef
[4]
Zurück zum Zitat Chan WL, Fu MW. Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol. 2012;212(7):1501.CrossRef Chan WL, Fu MW. Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol. 2012;212(7):1501.CrossRef
[5]
Zurück zum Zitat Liu JG, Fu MW, Chan WL. A constitutive model for modeling of the deformation behavior in micro-forming with a consideration of grain boundary strengthening. Comput Mater Sci. 2012;55(55):85.CrossRef Liu JG, Fu MW, Chan WL. A constitutive model for modeling of the deformation behavior in micro-forming with a consideration of grain boundary strengthening. Comput Mater Sci. 2012;55(55):85.CrossRef
[6]
Zurück zum Zitat Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tool Manu. 2008;48(9):1014.CrossRef Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tool Manu. 2008;48(9):1014.CrossRef
[7]
Zurück zum Zitat Michel JF, Picart P. Size effects on the constitutive behavior for brass in sheet metal forming. J Mater Process Technol. 2003;141(3):439.CrossRef Michel JF, Picart P. Size effects on the constitutive behavior for brass in sheet metal forming. J Mater Process Technol. 2003;141(3):439.CrossRef
[8]
Zurück zum Zitat Kals TA, Eckstein R. Miniaturization in sheet metal working. J Mater Process Technol. 2000;103(1):95.CrossRef Kals TA, Eckstein R. Miniaturization in sheet metal working. J Mater Process Technol. 2000;103(1):95.CrossRef
[9]
Zurück zum Zitat Espinosa HD, Prorok BC, Peng B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids. 2004;52(3):667.CrossRef Espinosa HD, Prorok BC, Peng B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids. 2004;52(3):667.CrossRef
[10]
Zurück zum Zitat Kals TA, Eckstein R. Miniaturization in sheet metal working. J Mater Process Technol. 2000;103(1):95.CrossRef Kals TA, Eckstein R. Miniaturization in sheet metal working. J Mater Process Technol. 2000;103(1):95.CrossRef
[11]
Zurück zum Zitat Geiger M, Kleiner M, Eckstein R. Microforming. Ann CIRP. 2001;50(2):445.CrossRef Geiger M, Kleiner M, Eckstein R. Microforming. Ann CIRP. 2001;50(2):445.CrossRef
[12]
Zurück zum Zitat Ma Z, Tong GQ, Chen F, Wang Q, Wang S. Grain size effect on springback behavior in bending of Ti–2.5Al–1.5Mn foils. J Mater Process Technol. 2015;224(1):11.CrossRef Ma Z, Tong GQ, Chen F, Wang Q, Wang S. Grain size effect on springback behavior in bending of Ti–2.5Al–1.5Mn foils. J Mater Process Technol. 2015;224(1):11.CrossRef
[13]
Zurück zum Zitat Fu MW, Chan WL. Micro-Scaled Products Development via Microforming: Deformation Behaviours, Processes, Tooling and Its Realization. London: Springer; 2014. 43.CrossRef Fu MW, Chan WL. Micro-Scaled Products Development via Microforming: Deformation Behaviours, Processes, Tooling and Its Realization. London: Springer; 2014. 43.CrossRef
[14]
Zurück zum Zitat Li FL, Fu R, Feng D, Tian ZL. Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure. Rare Met. 2015;34(1):51.CrossRef Li FL, Fu R, Feng D, Tian ZL. Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure. Rare Met. 2015;34(1):51.CrossRef
[15]
Zurück zum Zitat Hadrboletz A, Weiss B, Khatibi G. Fatigue and fracture properties of thin metallic foils. Int J Fract. 2001;107(4):69.CrossRef Hadrboletz A, Weiss B, Khatibi G. Fatigue and fracture properties of thin metallic foils. Int J Fract. 2001;107(4):69.CrossRef
[16]
Zurück zum Zitat Saotome Y, Yasuda K, Kaga H. Micro-deep drawability of very thin sheet steels. J Mater Process Technol. 2001;113(1):641.CrossRef Saotome Y, Yasuda K, Kaga H. Micro-deep drawability of very thin sheet steels. J Mater Process Technol. 2001;113(1):641.CrossRef
[17]
Zurück zum Zitat Banabic D. Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits. Berlin: Springer; 2000. 334.CrossRef Banabic D. Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits. Berlin: Springer; 2000. 334.CrossRef
[18]
Zurück zum Zitat Simons G, Weippert C, Dual J, Villain J. Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng A. 2006;416(1):290.CrossRef Simons G, Weippert C, Dual J, Villain J. Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng A. 2006;416(1):290.CrossRef
[19]
Zurück zum Zitat Klein M, Hadrboletz A, Weiss B, Khatibi G. The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng A. 2001;319(1):924.CrossRef Klein M, Hadrboletz A, Weiss B, Khatibi G. The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng A. 2001;319(1):924.CrossRef
[20]
Zurück zum Zitat Fu MW, Chan WL. Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des. 2011;32(10):4738.CrossRef Fu MW, Chan WL. Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des. 2011;32(10):4738.CrossRef
[21]
Zurück zum Zitat Xu J, Guo B, Wang C, Shan D. Blanking clearance and grain size effects on micro deformation behavior and fracture in micro-blanking of brass foil. Int J Mach Tool Manu. 2012;60(1):27.CrossRef Xu J, Guo B, Wang C, Shan D. Blanking clearance and grain size effects on micro deformation behavior and fracture in micro-blanking of brass foil. Int J Mach Tool Manu. 2012;60(1):27.CrossRef
[22]
Zurück zum Zitat Joo BY, Rhim SH, Oh SI. Micro-hole fabrication by mechanical punching process. J Mater Process Technol. 2005;170(3):593.CrossRef Joo BY, Rhim SH, Oh SI. Micro-hole fabrication by mechanical punching process. J Mater Process Technol. 2005;170(3):593.CrossRef
[23]
Zurück zum Zitat Eichenhueller B, Egerer E, Engel U. Microforming at elevated temperature-forming and material behaviour. Int J Adv Manuf Technol. 2007;33(1):119.CrossRef Eichenhueller B, Egerer E, Engel U. Microforming at elevated temperature-forming and material behaviour. Int J Adv Manuf Technol. 2007;33(1):119.CrossRef
[24]
Zurück zum Zitat Wang CJ, Shan DB, Zhou J, Guo B, Sun LN. Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol. 2007;188(12):256.CrossRef Wang CJ, Shan DB, Zhou J, Guo B, Sun LN. Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol. 2007;188(12):256.CrossRef
[25]
Zurück zum Zitat Kang SG, Na YS, Park KY, Jeon JE, Son SC, Lee JH. A study on the micro-formability of Al 5083 superplastic alloy using micro-forging method. Mater Sci Eng A. 2007;449(12):338.CrossRef Kang SG, Na YS, Park KY, Jeon JE, Son SC, Lee JH. A study on the micro-formability of Al 5083 superplastic alloy using micro-forging method. Mater Sci Eng A. 2007;449(12):338.CrossRef
[26]
Zurück zum Zitat Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley; 2006. 8. Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley; 2006. 8.
[27]
Zurück zum Zitat Hall EO. The deformation and ageing of mild steel: II Characteristics of the lüders deformation. Proc Phys Soc B. 1951;64(9):742.CrossRef Hall EO. The deformation and ageing of mild steel: II Characteristics of the lüders deformation. Proc Phys Soc B. 1951;64(9):742.CrossRef
[28]
Zurück zum Zitat Fu H-H, Benson DJ, Meyers MA. Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 2001;49(13):2567.CrossRef Fu H-H, Benson DJ, Meyers MA. Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 2001;49(13):2567.CrossRef
[29]
Zurück zum Zitat Miyazaki S, Fujita H, Hiraoka H. Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu-Al alloy. Scr Metall. 1979;13(6):447.CrossRef Miyazaki S, Fujita H, Hiraoka H. Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu-Al alloy. Scr Metall. 1979;13(6):447.CrossRef
[30]
Zurück zum Zitat Gao H, Huang Y. Geometrically necessary dislocation and size-dependent plasticity. Scripta Mater. 2003;48(2):113.CrossRef Gao H, Huang Y. Geometrically necessary dislocation and size-dependent plasticity. Scripta Mater. 2003;48(2):113.CrossRef
[31]
Zurück zum Zitat Fleck NA, Hutchinson JW. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids. 1993;41(12):1825.CrossRef Fleck NA, Hutchinson JW. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids. 1993;41(12):1825.CrossRef
[32]
Zurück zum Zitat Matsuo T, Yamabe J, Matsuoka S. Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel. Int J Hydrog Energy. 2014;39(7):3542.CrossRef Matsuo T, Yamabe J, Matsuoka S. Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel. Int J Hydrog Energy. 2014;39(7):3542.CrossRef
Metadaten
Titel
Tensile properties and fractographs of Ti–2.5Al–1.5Mn foils at different temperatures
verfasst von
Zhen-Wu Ma
Guo-Quan Tong
Feng Chen
Publikationsdatum
08.02.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2017
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0835-z

Weitere Artikel der Ausgabe 4/2017

Rare Metals 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.