Skip to main content
Erschienen in: Rare Metals 7/2018

13.04.2018

Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications

verfasst von: Jian-Li Wang, Yin Wan, Zhi-Jun Ma, Yong-Chun Guo, Zhong Yang, Ping Wang, Jian-Ping Li

Erschienen in: Rare Metals | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, ribbon and 2-mm rod samples of Mg–Zn–Ca–Mn alloys were prepared by melt-spinning and copper mold injection methods, respectively. Effects of Mn doping on glass-forming ability and corrosion performance in simulated body fluid of Mg65Zn30Ca5 alloy were studied through X-ray diffraction, scanning electron microscopy, differential scanning calorimeter, and electrochemical and immersion tests. Results show that with the Mn addition increasing, all the ribbon samples are completely in amorphous state. However, the microstructure of 2-mm rod samples transfers from fully amorphous for the Mn-free alloy to almost polycrystalline state with precipitated Mg, Mn, and MgZn phases. Glass-forming ability of Mg65Zn30Ca5 alloy is decreased by Mn addition. Results of electrochemical and immersion tests demonstrate that the Mn-doped samples exhibit more negative corrosion potential and larger corrosion current density, suggesting that the corrosion resistance decreases with doping amount of Mn element increasing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Hong D, Saha P, Chou DT, Lee B, Collins BE, Tan ZQ, Dong ZY, Kumta PN. In vitro degradation and cytotoxicity response of Mg–4%Zn–0.5%Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater. 2013;9(10):8534.CrossRef Hong D, Saha P, Chou DT, Lee B, Collins BE, Tan ZQ, Dong ZY, Kumta PN. In vitro degradation and cytotoxicity response of Mg–4%Zn–0.5%Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater. 2013;9(10):8534.CrossRef
[2]
Zurück zum Zitat Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728.CrossRef Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728.CrossRef
[3]
Zurück zum Zitat Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1–3):27.CrossRef Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1–3):27.CrossRef
[4]
Zurück zum Zitat Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230.CrossRef Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230.CrossRef
[5]
Zurück zum Zitat Choi YI, Salman S, Kuroda K, Okido M. Improvement in corrosion characteristics of AZ31 Mg alloy by square pulse anodizing between transpassive and active regions. Corros Sci. 2012;63:5.CrossRef Choi YI, Salman S, Kuroda K, Okido M. Improvement in corrosion characteristics of AZ31 Mg alloy by square pulse anodizing between transpassive and active regions. Corros Sci. 2012;63:5.CrossRef
[6]
Zurück zum Zitat Jamesh M, Kumar S, Narayanan TSNS. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution—long term evaluation by EIS. Corros Sci. 2011;53(2):645.CrossRef Jamesh M, Kumar S, Narayanan TSNS. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution—long term evaluation by EIS. Corros Sci. 2011;53(2):645.CrossRef
[7]
Zurück zum Zitat Erbel R, Di MC, Bartunek J, Bonnier J, Bruyne BD, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. The Lancet. 2007;369(9576):1869.CrossRef Erbel R, Di MC, Bartunek J, Bonnier J, Bruyne BD, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. The Lancet. 2007;369(9576):1869.CrossRef
[8]
Zurück zum Zitat Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013.CrossRef Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013.CrossRef
[9]
Zurück zum Zitat Li H, Peng Q, Li X, Han ZS, Fang DQ. Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials. Mater Des. 2014;58:43.CrossRef Li H, Peng Q, Li X, Han ZS, Fang DQ. Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials. Mater Des. 2014;58:43.CrossRef
[10]
Zurück zum Zitat Yang Z, Yuan G, Zhang X, Mao L, Niu JL, Ding WJ. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Mater Sci Eng B. 2012;177(5):395.CrossRef Yang Z, Yuan G, Zhang X, Mao L, Niu JL, Ding WJ. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Mater Sci Eng B. 2012;177(5):395.CrossRef
[11]
Zurück zum Zitat Zhang W, Li M, Chen Q, Hu WY, Zhang WM, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des. 2012;39:379.CrossRef Zhang W, Li M, Chen Q, Hu WY, Zhang WM, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des. 2012;39:379.CrossRef
[12]
Zurück zum Zitat Gu Y, Bandopadhyay S, Chen CF, Ning CY, Guo YJ. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications. Mater Des. 2013;46:66.CrossRef Gu Y, Bandopadhyay S, Chen CF, Ning CY, Guo YJ. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications. Mater Des. 2013;46:66.CrossRef
[13]
Zurück zum Zitat Jiang WH, Jiang F, Green BA, Liu FX, Liaw PK. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass. Appl Phys Lett. 2007;91(4):1177.CrossRef Jiang WH, Jiang F, Green BA, Liu FX, Liaw PK. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass. Appl Phys Lett. 2007;91(4):1177.CrossRef
[14]
Zurück zum Zitat Gu X, Zheng Y, Zhong S, Xi TF, Wang JQ, Wang WH. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093.CrossRef Gu X, Zheng Y, Zhong S, Xi TF, Wang JQ, Wang WH. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093.CrossRef
[15]
Zurück zum Zitat Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, nickel, silicon, vanadium and zinc. J Am Diet Assoc. 2001;101(3):294.CrossRef Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, nickel, silicon, vanadium and zinc. J Am Diet Assoc. 2001;101(3):294.CrossRef
[16]
Zurück zum Zitat Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887.CrossRef Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887.CrossRef
[17]
Zurück zum Zitat Ramya M, Sarwat SG, Udhayabanu V, Subramanian S, Raj B, Ravi KR. Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater Des. 2015;86:829.CrossRef Ramya M, Sarwat SG, Udhayabanu V, Subramanian S, Raj B, Ravi KR. Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater Des. 2015;86:829.CrossRef
[18]
Zurück zum Zitat Li HF, Pang SJ, Liu Y, Liaw PK, Zhang T. In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J Non-Cryst Solids. 2015;427:134.CrossRef Li HF, Pang SJ, Liu Y, Liaw PK, Zhang T. In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J Non-Cryst Solids. 2015;427:134.CrossRef
[19]
Zurück zum Zitat Zhang E, Yin D, Xu L. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C. 2009;29(3):987.CrossRef Zhang E, Yin D, Xu L. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C. 2009;29(3):987.CrossRef
[20]
Zurück zum Zitat Xu L, Yu GE, Pan F. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83(3):70. Xu L, Yu GE, Pan F. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83(3):70.
[21]
Zurück zum Zitat Kakubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907.CrossRef Kakubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907.CrossRef
[22]
Zurück zum Zitat Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49(4):1696.CrossRef Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49(4):1696.CrossRef
[23]
Zurück zum Zitat Wang J, Li Y, Huang S. Effects of Y on the microstructure, mechanical and bio-corrosion properties of Mg–Zn–Ca bulk metallic glass. J Mater Sci Technol. 2014;30(12):1255.CrossRef Wang J, Li Y, Huang S. Effects of Y on the microstructure, mechanical and bio-corrosion properties of Mg–Zn–Ca bulk metallic glass. J Mater Sci Technol. 2014;30(12):1255.CrossRef
[24]
Zurück zum Zitat Wang YS, Tan MJ, Pang JJ, Wang ZM, Jarfors AWE. In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline. Mater Chem Phys. 2012;134(2–3):1079.CrossRef Wang YS, Tan MJ, Pang JJ, Wang ZM, Jarfors AWE. In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline. Mater Chem Phys. 2012;134(2–3):1079.CrossRef
[25]
Zurück zum Zitat Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279.CrossRef Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279.CrossRef
[26]
Zurück zum Zitat Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473.CrossRef Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473.CrossRef
[27]
Zurück zum Zitat Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50(13):3501.CrossRef Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50(13):3501.CrossRef
[28]
Zurück zum Zitat Zhang QS, Zhang HF, Deng YF, Ding BZ, Hu ZQ. Bulk metallic glass formation of Cu–Zr–Ti–Sn alloys. Scr Mater. 2003;49(4):273.CrossRef Zhang QS, Zhang HF, Deng YF, Ding BZ, Hu ZQ. Bulk metallic glass formation of Cu–Zr–Ti–Sn alloys. Scr Mater. 2003;49(4):273.CrossRef
[29]
Zurück zum Zitat Xie KF, Yao KF, Huang TY. A Ti-based bulk glassy alloy with high strength and good glass forming ability. Intermetallics. 2010;18(10):1837.CrossRef Xie KF, Yao KF, Huang TY. A Ti-based bulk glassy alloy with high strength and good glass forming ability. Intermetallics. 2010;18(10):1837.CrossRef
[30]
Zurück zum Zitat Zhang ZY, Wu Y, Zhou J, Song WL, Cao D, Wang H, Liu XJ, Lu ZP. Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics. 2013;42(11):68.CrossRef Zhang ZY, Wu Y, Zhou J, Song WL, Cao D, Wang H, Liu XJ, Lu ZP. Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics. 2013;42(11):68.CrossRef
[31]
Zurück zum Zitat Li Z, Gu X, Lou S, Zheng YF. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329.CrossRef Li Z, Gu X, Lou S, Zheng YF. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329.CrossRef
[32]
Zurück zum Zitat Hofstetter J, Martinelli E, Pogatscher S, Schmutz P, Povoden-Karadeniz E, Weinberg AM, Uggowitzer PJ, Löffler JF. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater. 2015;23:347.CrossRef Hofstetter J, Martinelli E, Pogatscher S, Schmutz P, Povoden-Karadeniz E, Weinberg AM, Uggowitzer PJ, Löffler JF. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater. 2015;23:347.CrossRef
[33]
Zurück zum Zitat Li X, Liu X, Wu S, Yeung KWK, Zheng YF, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater. 2016;45:2.CrossRef Li X, Liu X, Wu S, Yeung KWK, Zheng YF, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater. 2016;45:2.CrossRef
[34]
Zurück zum Zitat Wu GH, Gao HT, Ding WJ, Zhu YP. Study on mechanism of iron reduction in magnesium alloy melt. J Mater Sci. 2005;40(23):6175.CrossRef Wu GH, Gao HT, Ding WJ, Zhu YP. Study on mechanism of iron reduction in magnesium alloy melt. J Mater Sci. 2005;40(23):6175.CrossRef
[35]
Zurück zum Zitat Ahmad Z. Principles of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann; 2006. 20. Ahmad Z. Principles of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann; 2006. 20.
Metadaten
Titel
Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications
verfasst von
Jian-Li Wang
Yin Wan
Zhi-Jun Ma
Yong-Chun Guo
Zhong Yang
Ping Wang
Jian-Ping Li
Publikationsdatum
13.04.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1032-z

Weitere Artikel der Ausgabe 7/2018

Rare Metals 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.