Skip to main content
Erschienen in: Rare Metals 11/2019

21.06.2018

Prediction of properties distribution of 7B50 alloy thick plates after quenching and aging by quench factor analysis method

verfasst von: Lei Kang, Yi-Ran Zhou, Gang Zhao, Kun Liu, Ni Tian

Erschienen in: Rare Metals | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, continuous cooling curves were accurately measured by the modified Jominy specimen of 7B50 alloy during water-spray quenching tests. Besides, the time–temperature–properties (TTP) curves of this alloy were obtained during isothermal treatments. Based on the accurate cooling curves and TTP curves, the hardness distribution along the thickness direction of 7B50 alloy thick plates was predicted by quench factor analysis method. It is found that the quench sensitive temperature range of 7B50 alloy is 240–410 °C, the nose temperature is 335 °C, and the incubation period at the nose temperature is about 0.87 s. When 7B50 alloy was isothermal treated at 180–400 °C after solid solution treatment (470 °C for 1 h followed by 483 °C for 2 h), the exponent (n) in the Johnson–Mehl–Avrami equation is close to 1 until transformed fraction of new precipitates is up to 60%, indicating that new precipitates first grow into rodlike shape and then coarsen or thicken. When the distance is less than 65 mm from the spray quenching surface of the modified Jominy specimen, the deviation between the predicted and measured hardness is less than 2.7%, confirming the quench factor analysis method as the feasible way to predict the hardness distribution along the thickness direction of 7B50 alloy thick plates. When the distance from the spray quenching surface is 25 mm, the average cooling rate in quench sensitive temperature range is 9.93 °C·s−1, while the quench factor (τ) is 9.89 and the corresponding predicted hardness is HV 185.1 equivalent to 97.3% of the maximum measured hardness of 7B50 alloy in T6 temper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56(4):862. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56(4):862.
[2]
Zurück zum Zitat Zhang J, Deng YL, Yang W, Hu SS, Zhang XM. Design of the multi-stage quenching process for 7050 aluminum alloy. Mater Des. 2014;56(4):334. Zhang J, Deng YL, Yang W, Hu SS, Zhang XM. Design of the multi-stage quenching process for 7050 aluminum alloy. Mater Des. 2014;56(4):334.
[3]
Zurück zum Zitat Deschamps A, Brechet Y. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy. Mater Sci Eng A. 1998;251(1–2):200. Deschamps A, Brechet Y. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy. Mater Sci Eng A. 1998;251(1–2):200.
[4]
Zurück zum Zitat Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.
[5]
Zurück zum Zitat Li PY, Xiong BQ, Zhang YA, Li ZH, Zhu BH, Wang F, Liu HW. Quench sensitivity and microstructure character of high strength AA7050. Trans Nonferrous Met Soc China. 2012;22(2):268. Li PY, Xiong BQ, Zhang YA, Li ZH, Zhu BH, Wang F, Liu HW. Quench sensitivity and microstructure character of high strength AA7050. Trans Nonferrous Met Soc China. 2012;22(2):268.
[6]
Zurück zum Zitat Xiong BQ, Li XW, Zhang YA, Li ZH, Zhu BH, Wang F, Liu HW. Investigation of quench sensitivity of an Al–7.5Zn–1.7 Mg–1.4Cu–0.12Zr alloy. Mater Sci Forum. 2012;706–709:431. Xiong BQ, Li XW, Zhang YA, Li ZH, Zhu BH, Wang F, Liu HW. Investigation of quench sensitivity of an Al–7.5Zn–1.7 Mg–1.4Cu–0.12Zr alloy. Mater Sci Forum. 2012;706–709:431.
[7]
Zurück zum Zitat Robinson JS, Cudd RL, Tanner DA, Dolan GP. Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J Mater Process Technol. 2001;119(1–3):261. Robinson JS, Cudd RL, Tanner DA, Dolan GP. Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J Mater Process Technol. 2001;119(1–3):261.
[8]
Zurück zum Zitat Liu SD, Zhang XM, Chen MA, You JH, Zhang XY. Effect of Zr content on quench sensitivity of AlZnMgCu alloys. Trans Nonferrous Met Soc China. 2007;17(4):787. Liu SD, Zhang XM, Chen MA, You JH, Zhang XY. Effect of Zr content on quench sensitivity of AlZnMgCu alloys. Trans Nonferrous Met Soc China. 2007;17(4):787.
[9]
Zurück zum Zitat Starink MJ, Milkereit B, Zhang Y, Rometsch PA. Predicting the quench sensitivity of Al–Zn–Mg–Cu alloys: a model for linear cooling and strengthening. Mater Des. 2015;88:958. Starink MJ, Milkereit B, Zhang Y, Rometsch PA. Predicting the quench sensitivity of Al–Zn–Mg–Cu alloys: a model for linear cooling and strengthening. Mater Des. 2015;88:958.
[10]
Zurück zum Zitat Liu SD, Zhang XM, Chen MA, You JH. Influence of aging on quench sensitivity effect of 7055 aluminum alloy. Mater Charact. 2008;59(1):53. Liu SD, Zhang XM, Chen MA, You JH. Influence of aging on quench sensitivity effect of 7055 aluminum alloy. Mater Charact. 2008;59(1):53.
[11]
Zurück zum Zitat Li ZH, Xiong BQ, Zhang YA, Zhu BH, Wang F, Liu HW. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments. Trans Nonferrous Met Soc China. 2008;18(1):40. Li ZH, Xiong BQ, Zhang YA, Zhu BH, Wang F, Liu HW. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments. Trans Nonferrous Met Soc China. 2008;18(1):40.
[12]
Zurück zum Zitat Liu SD, Zhang XM, Huang ZB, You JH. Prediction of hardness of aluminum alloy 7055 by quench factor analysis. Mater Sci Forum. 2007;546–549:881. Liu SD, Zhang XM, Huang ZB, You JH. Prediction of hardness of aluminum alloy 7055 by quench factor analysis. Mater Sci Forum. 2007;546–549:881.
[13]
Zurück zum Zitat Robinson JS, Tanner DA, Truman CE, Paradowska AM, Wimpory RC. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075. Mater Charact. 2012;65(3):73. Robinson JS, Tanner DA, Truman CE, Paradowska AM, Wimpory RC. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075. Mater Charact. 2012;65(3):73.
[14]
Zurück zum Zitat Mackerle J. Finite element analysis and simulation of quenching and other heat treatment processes: a bibliography (1976–2001). Comput Mater Sci. 2003;27(3):313. Mackerle J. Finite element analysis and simulation of quenching and other heat treatment processes: a bibliography (1976–2001). Comput Mater Sci. 2003;27(3):313.
[15]
Zurück zum Zitat Evancho JW, Staley JT. Kinetics of precipitation in aluminum alloys during continuous cooling. Metall Trans. 1974;5(1):43. Evancho JW, Staley JT. Kinetics of precipitation in aluminum alloys during continuous cooling. Metall Trans. 1974;5(1):43.
[16]
Zurück zum Zitat Staley JT. Quench factor analysis of aluminium alloys. Mater Sci Technol. 1987;3(11):923. Staley JT. Quench factor analysis of aluminium alloys. Mater Sci Technol. 1987;3(11):923.
[17]
Zurück zum Zitat Dolan GP, Flynn RJ, Tanner DA, Robinson JS. Quench factor analysis of aluminium alloys using the Jominy end quench technique. Mater Sci Technol. 2005;21(6):687. Dolan GP, Flynn RJ, Tanner DA, Robinson JS. Quench factor analysis of aluminium alloys using the Jominy end quench technique. Mater Sci Technol. 2005;21(6):687.
[18]
Zurück zum Zitat Staley JT, Doherty RD, Jaworski AP. Improved model to predict properties of aluminum alloy products after continuous cooling. Metall Trans A. 1993;24(11):2417. Staley JT, Doherty RD, Jaworski AP. Improved model to predict properties of aluminum alloy products after continuous cooling. Metall Trans A. 1993;24(11):2417.
[19]
Zurück zum Zitat Li HP, Zhao GQ, Niu ST, Huang CZ. FEM simulation of quenching process and experimental verification of simulation results. Mater Sci Eng A. 2007;452–453(24):705. Li HP, Zhao GQ, Niu ST, Huang CZ. FEM simulation of quenching process and experimental verification of simulation results. Mater Sci Eng A. 2007;452–453(24):705.
[20]
Zurück zum Zitat Koç M, Culp J, Altan T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. J Mater Process Technol. 2006;174(1–3):342. Koç M, Culp J, Altan T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. J Mater Process Technol. 2006;174(1–3):342.
[21]
Zurück zum Zitat Yang XW, Zhu JC, Nong ZS, Lai ZH, He D. FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process. Comput Mater Sci. 2013;69(1):396. Yang XW, Zhu JC, Nong ZS, Lai ZH, He D. FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process. Comput Mater Sci. 2013;69(1):396.
[22]
Zurück zum Zitat Rometsch PA, Starink MJ, Gregson PJ. Improvements in quench factor modelling. Mater Sci Eng A. 2003;339(1–2):255. Rometsch PA, Starink MJ, Gregson PJ. Improvements in quench factor modelling. Mater Sci Eng A. 2003;339(1–2):255.
[23]
Zurück zum Zitat Kianezhad M, Sajjadi SA. Improvement of quench factor analysis in phase and hardness prediction of a quenched steel. Metall Mater Trans A. 2013;44(5):2053. Kianezhad M, Sajjadi SA. Improvement of quench factor analysis in phase and hardness prediction of a quenched steel. Metall Mater Trans A. 2013;44(5):2053.
[24]
Zurück zum Zitat Otero RLS, Otero WR, Totten GE, Canale LCF. Quench factor characterization of steel hardening: a review. Int J Mech Eng Autom. 2014;1(3):119. Otero RLS, Otero WR, Totten GE, Canale LCF. Quench factor characterization of steel hardening: a review. Int J Mech Eng Autom. 2014;1(3):119.
[25]
Zurück zum Zitat Tiryakioglu M, Robinson JS, Eason PD. On the quench sensitivity of 7010 aluminum alloy forgings in the overaged condition. Mater Sci Eng A. 2014;618:22. Tiryakioglu M, Robinson JS, Eason PD. On the quench sensitivity of 7010 aluminum alloy forgings in the overaged condition. Mater Sci Eng A. 2014;618:22.
[26]
Zurück zum Zitat Liu SD, Zhang XM, You JH, Huang ZB, Zhang C, Zhang XY. TTP curve of 7055 aluminum alloy and its application. Chin J Nonferrous Met. 2006;16(12):2034. Liu SD, Zhang XM, You JH, Huang ZB, Zhang C, Zhang XY. TTP curve of 7055 aluminum alloy and its application. Chin J Nonferrous Met. 2006;16(12):2034.
[27]
Zurück zum Zitat Dolan GP, Robinson JS. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis. J Mater Process Technol. 2004;153–154(32):346. Dolan GP, Robinson JS. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis. J Mater Process Technol. 2004;153–154(32):346.
[28]
Zurück zum Zitat Shang BC, Yin ZM, Wang G, Liu B, Huang ZQ. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy. Mater Des. 2011;32(7):3818. Shang BC, Yin ZM, Wang G, Liu B, Huang ZQ. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy. Mater Des. 2011;32(7):3818.
[29]
Zurück zum Zitat Flynn RJ, Robinson JS. The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy. J Mater Process Technol. 2004;153–154:674. Flynn RJ, Robinson JS. The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy. J Mater Process Technol. 2004;153–154:674.
[30]
Zurück zum Zitat Kang L, Zhao G, Tian N, Liu K. Research on a new method of axial temperature field determination during aluminum alloy end quenching. Light Alloy Fabr Technol. 2013;41(10):45. Kang L, Zhao G, Tian N, Liu K. Research on a new method of axial temperature field determination during aluminum alloy end quenching. Light Alloy Fabr Technol. 2013;41(10):45.
[31]
Zurück zum Zitat Newkirk JW, Mackenzie DS. The Jominy end quench for light-weight alloy development. J Mater Eng Perform. 2000;9(4):408. Newkirk JW, Mackenzie DS. The Jominy end quench for light-weight alloy development. J Mater Eng Perform. 2000;9(4):408.
[32]
Zurück zum Zitat Liu SD, Zhong QM, Zhang Y, Liu WJ, Zhang XM, Deng YL. Investigation of quench sensitivity of high strength Al–Zn–Mg–Cu alloys by time-temperature-properties diagrams. Mater Des. 2010;31(6):3116. Liu SD, Zhong QM, Zhang Y, Liu WJ, Zhang XM, Deng YL. Investigation of quench sensitivity of high strength Al–Zn–Mg–Cu alloys by time-temperature-properties diagrams. Mater Des. 2010;31(6):3116.
[33]
Zurück zum Zitat Zhang XM, Liu WJ, Liu SD, Yuan YB, Deng YL. TTP curve of aluminum alloy 7050. Chin J Nonferrous Met. 2009;19(5):861. Zhang XM, Liu WJ, Liu SD, Yuan YB, Deng YL. TTP curve of aluminum alloy 7050. Chin J Nonferrous Met. 2009;19(5):861.
[34]
Zurück zum Zitat Li HY, Zeng CT, Han MS, Liu JJ, Lu XC. Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy. Trans Nonferrous Met Soc China. 2013;23(1):38. Li HY, Zeng CT, Han MS, Liu JJ, Lu XC. Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy. Trans Nonferrous Met Soc China. 2013;23(1):38.
[35]
Zurück zum Zitat Kang L, Zhao G, Tian N, Fu H. Measurement of TTP curves of 7050 aluminum alloy by conductivity. Adv Mater Res. 2015;1095:168. Kang L, Zhao G, Tian N, Fu H. Measurement of TTP curves of 7050 aluminum alloy by conductivity. Adv Mater Res. 2015;1095:168.
[36]
Zurück zum Zitat Porter DA, Easterling KE, Sherif MY. Phase Transformations in Metals and Alloys. 3rd ed. Beijing: Higher Education Press; 2011. 233. Porter DA, Easterling KE, Sherif MY. Phase Transformations in Metals and Alloys. 3rd ed. Beijing: Higher Education Press; 2011. 233.
[37]
Zurück zum Zitat Yu YN. Metallography Principle. 2nd ed. Beijing: Metallurgical Industry Press; 2013. 620. Yu YN. Metallography Principle. 2nd ed. Beijing: Metallurgical Industry Press; 2013. 620.
[38]
Zurück zum Zitat Feng D. Metal Physics (Volume II) Phase Transformation. Beijing: Science Press; 2000. 180. Feng D. Metal Physics (Volume II) Phase Transformation. Beijing: Science Press; 2000. 180.
[39]
Zurück zum Zitat Kavalco PM, Canale LCF, Totten GE. Quenching of aluminum alloys: property prediction by quench factor analysis. Heat Treat Prog. 2009;9(3):23. Kavalco PM, Canale LCF, Totten GE. Quenching of aluminum alloys: property prediction by quench factor analysis. Heat Treat Prog. 2009;9(3):23.
[40]
Zurück zum Zitat Bates CE, Totten GE. Procedure for quenching media selection to maximise tensile properties and minimise distortion in aluminium-alloy parts. Heat Treat Met. 1988;15(4):89. Bates CE, Totten GE. Procedure for quenching media selection to maximise tensile properties and minimise distortion in aluminium-alloy parts. Heat Treat Met. 1988;15(4):89.
Metadaten
Titel
Prediction of properties distribution of 7B50 alloy thick plates after quenching and aging by quench factor analysis method
verfasst von
Lei Kang
Yi-Ran Zhou
Gang Zhao
Kun Liu
Ni Tian
Publikationsdatum
21.06.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 11/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1083-1

Weitere Artikel der Ausgabe 11/2019

Rare Metals 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.