Skip to main content
Log in

Partitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A low-density single crystal (LDS) alloy with the composition of high Mo content was designed. The extra 1.5 wt% Mo was added in the Alloy A with the composition of Ni–6.5Al–8.0Mo–2.4Cr–6.2Ta–4.9Co–1.5Re–(0.01–0.05)Y (wt%) to study the influence of Mo on the lattice parameter and partitioning behavior. Scanning electron microscope (SEM) with energy-dispersive spectrometer (EDS), transmission electron microscopy (TEM) and high-temperature X-ray diffraction (HT-XRD) were used to observe the microstructure, analyze the elemental content and measure the lattice parameter of the alloys. The natural lattice misfit was calculated by lattice constants which were measured by HT-XRD at the temperature from 25 to 1150 °C, and the results showed that the lattice misfit would be more and more negative with temperature increasing. It was found that 1.5 wt% addition of Mo will increase the absolute value of the lattice misfit of γ/γ′ phases and the volume fraction of γ′, and at the same time, influence the elemental distribution in γ and γ′ phases, especially Re and Cr. Re has a higher partitioning ratio (k) after the addition of Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reed RC. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press; 2006. 112.

    Book  Google Scholar 

  2. Vattré A, Devincre B, Roos A. Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction. Intermetallics. 2009;17(12):988.

    Article  Google Scholar 

  3. Liu J, Cao J, Lin X, Song X, Feng J. Microstructure and mechanical properties of diffusion bonded single crystal to polycrystalline Ni-based superalloys joint. Mater Des. 2013;49(Complete):622.

    Article  CAS  Google Scholar 

  4. Burns DE, Zhang Y, Teutsch M, Teutsch M, Bade K, Aktaa J, Hemker KJ. Development of Ni-based superalloys for microelectromechanical systems. Scr Mater. 2012;67(5):459.

    Article  CAS  Google Scholar 

  5. Mackay RA, Gabb TP, Garg A. Influence of composition on microstructural parameters of single crystal nickel-base superalloys. Mater Charact. 2012;70(Complete):83.

    Article  CAS  Google Scholar 

  6. Zhao HG, Li SS, Pei YL, Gong SK, Xu HB. Microstructure and mechanical properties of Ni3Al-based single crystal alloy IC21. Acta Metall Sin. 2015;51(10):1279.

    CAS  Google Scholar 

  7. Siebörger D, Brehm H, Wunderlich F, Möller D. Temperature dependence of lattice parameter, misfit and thermal expansion coefficient of matrix, γ′ phase and superalloy. Zeitschriftfuer Metallkunde. 2001;92(1):58.

    Google Scholar 

  8. Mukherji D, Gilles R, Barbier B, Genovese DD, Hasse B, Strunz P. Lattice misfit measurement in Inconel 706 containing coherent γ′, and γ″ precipitates. Scr Mater. 2003;48(4):333.

    Article  CAS  Google Scholar 

  9. Zeman P, Zuzjaková Š, Blažek J, Čerstvý R, Musil J. Thermally activated transformations in metastable alumina coatings prepared by magnetron sputtering. Surf Coat Technol. 2014;240:7.

    Article  CAS  Google Scholar 

  10. Hashizume R, Yoshinari A, Kiyono T, Murata Y, Morinaga M. Development of novel Ni-based single crystal superalloys for power-generation gas turbines. Mater High Temp. 2007;24(3):163.

    Article  CAS  Google Scholar 

  11. Mackay RA, Gabb TP, Smialek JL, Nathal MV. A new approach of designing superalloys for low density. J Met. 2010;62(1):48.

    CAS  Google Scholar 

  12. Liang YF, Li SS, Ai C, Han YF, Gong SK. Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy. Prog Nat Sci Mater Int. 2016;26(1):112.

    Article  CAS  Google Scholar 

  13. Pyczak F, Devrient B, Neuner FC, Mughrabi H. The influence of different alloying elements on the development of the γ/γ′ microstructure of nickel-base superalloys during high-temperature annealing and deformation. Acta Mater. 2005;53(14):3879.

    Article  CAS  Google Scholar 

  14. Siebörger D, Brehm H, Wunderlich F, Möller D, Glatzel U. Temperature dependence of lattice parameter, misfit and thermal expansion coefficient of matrix, γ′ phase and superalloy. Z Metallkd. 2001;92(1):58.

    Google Scholar 

  15. Teresiak A, Gebert A, Savyak M, Mattern N, Uhlemann M. In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5, alloy under hydrogen. J Alloy Compd. 2005;398(1–2):156.

    Article  CAS  Google Scholar 

  16. Huntz AM, Liu C, Kornmeier M, Lebrun JL. The determination of stresses during oxidation of Ni: in situ, measurements by XRD at high temperature. Corros Sci. 1993;35(5–8):989.

    Article  CAS  Google Scholar 

  17. Berbenni V, Marini A. Thermoanalytical (TGA-DSC) and high temperature X-ray diffraction (HT-XRD) study of the thermal decomposition processes in Li2CO3–MnO mixtures. J Anal Appl Pyrol. 2002;64(1):43.

    Article  CAS  Google Scholar 

  18. Oezaslan M, Hasché F, Strasser P. In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater. 2011;23(8):2159.

    Article  CAS  Google Scholar 

  19. Heckl A, Neumeier S, Göken M, Singer RF. The effect of Re and Ru on γ/γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater Sci Eng, A. 2011;528(9):3435.

    Article  Google Scholar 

  20. Bürgel R. Handbuch Hochtemperatur-Werkstofftechnik. Wiesbaden: Vieweg & Sohn; 2006. 24.

    Google Scholar 

  21. Achary SN, Ambekar BR, Mathews MD, Tyagi AK, Moorthy PN. Study of phase transition and volume thermal expansion in a rare-earth (RE) oxyfluoride system by high-temperature XRD (RE = La, Nd, Sm, Eu and Gd). Thermochim Acta. 1998;320(1–2):239.

    Article  CAS  Google Scholar 

  22. Jr MAS, Freitas JCC, Morigaki MK. High-temperature XRD study of thermally induced structural and chemical changes in iron oxide nanoparticles embedded in porous carbons. J Nanoparticle Res. 2010;12(8):3097.

  23. Ohta Y, Yoshizawa H, Nakagawa YG. Microstructural changes in a Ni-base superalloy during service. Scr Metall. 1989;23(9):1609.

    Article  CAS  Google Scholar 

  24. Kommel L. Influence of interdiffusion on phases chemical composition and micromechanical properties of the single crystal Ni-base superalloy. Int Balt Conf Eng Mater Tribol Baltmattrib. 2013;35(3):45.

    Google Scholar 

  25. Tian S, Wang M, Yu H, Xingfu Y, Tang L, Benjiang Q. Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys. Mater Sci Eng, A. 2010;527(16–17):4458.

    Google Scholar 

  26. Chieux M, Molins R, Rémy L, Duhamel C, Sennour M, Cadoret Y. Effect of material and environmental parameters on the microstructure evolution and oxidation behavior of a Ni-based superalloy coated with a Pt-modified Ni-aluminide. Mater Sci Forum. 2008;595(598):8.

    Google Scholar 

  27. Mughrabi H. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—with special reference to the new γ′-hardened Co-base superalloys. Acta Mater. 2014;81(81):21.

    Article  CAS  Google Scholar 

  28. Murakami H, Honma T, Koizumi Y, Harada H. Distribution of platinum group metals in Ni-base single-crystal superalloys. Superalloys. 2000. https://doi.org/10.7449/2000/superalloys_2000_747_756.

    Article  Google Scholar 

  29. Volek A, Pyczak F, Singer RF, Mughrabi H. Partitioning of Re between γ and γ′ phase in nickel-base superalloys. Scr Mater. 2005;52(2):141.

    Article  CAS  Google Scholar 

  30. Mishima Y, Ochiai S, Suzuki T. Lattice parameters of Ni(γ), Ni3Al(γ′) and Ni3Ga(γ′) solid solutions with additions of transition and B-subgroup elements. Acta Metall. 1985;33(6):1161.

    Article  CAS  Google Scholar 

  31. Cao JD, Zhang JS, Hua YQ, Rong Z, Chen RF, Ye YX. High temperature oxidation behavior of Ni-based superalloy GH586 in air. Rare Met. 2017;36(11):878.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. U1435207, 51371007 and 51671015) and the National Defense Basic Scientific Research Program of China (No. A2120132006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Pei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Pei, YL., Luo, L. et al. Partitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additions. Rare Met. 40, 920–927 (2021). https://doi.org/10.1007/s12598-019-01309-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01309-z

Keywords

Navigation