Skip to main content
Log in

Deformation behavior and microstructure of an Al-Zn-Mg-Cu-Zr alloy during hot deformation

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The hot deformation behavior and microstructures of Al-7055 commercial alloy were investigated by axisymmetric hot compression at temperatures ranging from 300°C to 450°C and strain rates from 10−2 to 10 s−1, respectively. Microstructures of deformed 7055 alloy were investigated by transmission electron microscopy (TEM). The dependence of peak stress on deformation temperature and strain rate can be expressed by the hyperbolic-sine type equation. The hot deformation activation energy of the alloy is 146 kJ/mol. Moreover, the flow stress curves predicted by the modified constitutive equations are reasonably consistent with the experimental results, which confirms that the proposed deformation constitutive equations can provide evidence for the selection of hot forming parameters. TEM results indicate that dynamic recovery is the main softening mechanism during hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kaibyshev, T. Sakai, F. Musin, et al., Superplastic behavior of a 7055 aluminum alloy, Scripta Mater., 45(2001), No.12, p.1373.

    Article  CAS  Google Scholar 

  2. C. Mondal, A.K. Mukhopadhyay, T. Raghu, and V.K. Varma, Tensile properties of peak aged 7055 aluminum alloy extrusions, Mater. Sci. Eng. A, 455(2007), No.3, p.673.

    Google Scholar 

  3. J.Z. Chen, L. Zhen, W.Z. Shao, et al., Through-thickness texture gradient in AA 7055 aluminum alloy, Mater. Lett., 62(2008), No.1, p.88.

    Article  CAS  Google Scholar 

  4. M. Dixit, R.S. Mishra, and K.K. Sankaran, Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys, Mater. Sci. Eng. A, 478(2008), No.1–2, p.163.

    Google Scholar 

  5. S.D. Liu, X.M. Zhang, M.A. Chen, et al., Influence of aging on quench sensitivity effect of 7055 aluminum alloy, Mater. Charact., 59(2008), No.1, p.53.

    Article  CAS  Google Scholar 

  6. Z.H. Li, B.Q. Xiong, Y.A. Zhang, et al., Ageing behavior of an Al-Zn-Mg-Cu alloy pre-stretched thick plate, J. Univ. Sci. Technol. Beijing, 14(2007), No.3, p.246.

    CAS  Google Scholar 

  7. K.H. Chen, H.W. Liu, Z. Zhang, et al., The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments, J. Mater. Process. Technol., 142(2003), No.1, p.190.

    Article  CAS  Google Scholar 

  8. I. Nikulin, R. Kaibyshev, and T. Sakai, Superplasticity in a 7055 aluminum alloy processed by ECAE and subsequent isothermal rolling, Mater. Sci. Eng. A, 407(2005), No.1–2, p.62.

    Google Scholar 

  9. Q. Zhu, M.F. Abbod, J.T. Alamantes-Silva, et al., Hybrid modelling of aluminium magnesium alloys during thermomechanical processing in terms of physically-based, neuro-fuzzy and finite element models, Acta Mater., 51(2003), No.17, p.5051.

    Article  CAS  Google Scholar 

  10. Q.J. Chen, Y.L. Kang, H. Yu, et al., Research on microstructural evolution and dynamic recrystallization behavior of JB800 bainitic steel by FEM, J. Univ. Sci. Technol. Beijing, 15(2008), No.3, p.250.

    CAS  Google Scholar 

  11. J. Shen, Study on the Plastic Deformation Behavior of 2091 Al-Li Alloy at Elevated Temperatures [Dissertation] (in Chinese), Central South University of Technology, Changsha, 1996, p.22.

    Google Scholar 

  12. F.J. Humphreys and M. Hatherly, Re-crystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 2004, p.416.

    Google Scholar 

  13. J.T. Liu, G.Q. Liu, B.F. Hu, et al., Hot deformation behavior of FGH96 superalloys, J. Univ. Sci. Technol. Beijing, 13(2006), No.4, p.319.

    Google Scholar 

  14. H. Shi, A.J. McLaren, C.M. Sellars, et al., Constitutive equations for high temperature flow stress of aluminum alloys, Mater. Sci. Technol. A, 13(1997), No.3, p.210.

    CAS  Google Scholar 

  15. X.H. He, Z.Q. Yu, G.M. Liu, et al., Mathematical modeling for high temperature flow behavior of as-cast Ti-45Al-8.5Nb-(W,B,Y) alloy, Mater. Des., 30(2009), No.1, p.166.

    CAS  Google Scholar 

  16. M. Mulyadi, M.A. Rist, L. Edwards, and J.W. Brooks, Parameter optimisation in constitutive equations for hot forging, J. Mater. Process. Technol., 177(2006), No.1–3, p.311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-ming Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Lm., Shen, J., Li, Jp. et al. Deformation behavior and microstructure of an Al-Zn-Mg-Cu-Zr alloy during hot deformation. Int J Miner Metall Mater 17, 46–52 (2010). https://doi.org/10.1007/s12613-010-0108-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-010-0108-z

Keywords

Navigation