Skip to main content

Advertisement

Log in

Development of high volume rice husk ash alumino silicate composites

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The development of high volume rice husk ash (RHA) alumino silicate composites (ASC) was studied. RHA was used as the source of silica and aluminium in the ASC. The mass ratios of RHA:Al(OH)3 of 70:30 to 99:1 were tested. The results indicate that the obtained ASC mortars are not stable and disintegrate in water. Boric acid was introduced to the mixture to overcome this problem. Stable ASC mortars with high RHA:Al(OH)3 mass ratios of 90:10 to 97.5:2.5 were obtained with the use of boric acid and 115°C curing. The compressive strength of the mortar of 20 MPa was gained. The immersion test indicates that high volume RHA ASC mortars show good resistance in 3vol% H2SO4 solution, but is slightly less durable in 5wt% MgSO4 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Malhotra, Introduction: sustainable development and concrete technology, ACI Concr. Int., 24(2002), No.7, p.22.

    MathSciNet  Google Scholar 

  2. J. Davidovits, Geopolymer-inorganic polymeric new materials, J. Therm. Anal., 37(1991), No.8, p.1633.

    Article  CAS  Google Scholar 

  3. C. Real, M.D. Alcald, and J.M. Criado, Preparation of silica from rice husks, J. Am. Ceram. Soc., 79(1996), No.8, p.2012.

    Article  CAS  Google Scholar 

  4. P. Stroeven, D.D. Bui, and E. Sabuni, Ash of vegetable waste used for economics production of low to high strength hydraulic binders, Fuel, 78(1999), No.2, p.153.

    Article  CAS  Google Scholar 

  5. U. Kalapathy, A. Proctor, and J. Shutz, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73(2000), No.3, p.257.

    Article  CAS  Google Scholar 

  6. V.P. Della, I. Kühn, and D. Hotza, Rice husk ash as an alternate source for active silica production, Mater. Lett., 57(2002), No.4, p.818.

    Article  CAS  Google Scholar 

  7. D.M. Ibrahim and M. Helmy, Crystallite growth of rice husk ash silica, Thermochim. Acta, 45(1981), No.1, p.79.

    Article  CAS  Google Scholar 

  8. S. Rukzon, P. Chindaprasirt, and R. Mahachai, Effect of grinding on chemical and physical properties of rice husk ash, Int. J. Miner. Metall. Mater., 16(2009), No.2, p.242.

    Article  CAS  Google Scholar 

  9. P. Chindaprasirt, C. Jaturapitakkul, and U. Rattanasak, Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate, Fuel, 88(2009), No.1, p.158.

    Article  CAS  Google Scholar 

  10. S. Detphan and P. Chindaprasirt, Preparation of fly ash and rice husk ash geopolymer, Int. J. Miner. Metall. Mater., 16(2009), No.6, p.720.

    CAS  Google Scholar 

  11. R.A. Fletcher, K.J.D. Mackenzie, C.L. Nicholson, and S. Shimada, The composition range of aluminosilicate geo polymers, J. Eur. Ceram. Soc., 25(2005), p.1471.

    Article  CAS  Google Scholar 

  12. BS EN 1367, Test for Thermal and Weathering Properties of Aggregates-Part 3: Boiling Test for “Sonnenbrand” Basalt, British Standards Institution, London, 2001.

    Google Scholar 

  13. D. Haranath, P. Sharma, H. Chander, et al., Role of boric acid in synthesis and tailoring the properties of calcium aluminate phosphor, Mater. Chem. Phys., 101(2007), No.1, p.163.

    Article  CAS  Google Scholar 

  14. K.D. Kim, K.Y Choi, and J.W. Yang, Formation of spherical hollow silica particles from sodium silicate solution by ultrasonic spray pyrolysis method, Colloids Surf. A, 254(2005), No.1–3, p.193.

    Article  CAS  Google Scholar 

  15. M. Mora, D. Gutiérrez-Campos, C. Lavelle, and R.M. Rodríguez, Evaluation of Bayer process gibbsite reactivity in magnesium aluminate spinel formation, Mater. Sci. Eng. A, 454–455(2007), No.1, p.139.

    Google Scholar 

  16. E. Alvarez-Ayuso, X. Querol, F. Planar, et al., Environmental, physical and structural characterisation of geopolymer matrices synthesised from coal (co-)combustion fly ashes, J. Hazard. Mater., 154(2008), No.1–3, p.175.

    Article  PubMed  CAS  Google Scholar 

  17. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and L. Lorenzen, Factors affecting the immobilization of metals in geopolymerized fly ash, Metall. Mater. Trans. B, 29(1998), No.1, p.283.

    Article  Google Scholar 

  18. P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Manage., 29(2009), No.2, p.539.

    Article  CAS  Google Scholar 

  19. T. Bakharev, Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cem. Concr. Res., 35(2005), No.6, p.1233.

    Article  CAS  Google Scholar 

  20. J. Skalny, J. Marchand, and I. Odler, Sulfate Attack on Concrete, Spon Press, London, 2002, p.217.

    Google Scholar 

  21. P.C. Hewlett, Lea’s Chemistry of Cement and Concrete, Arnold, London, 1998, p.1092.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prinya Chindaprasirt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattanasak, U., Chindaprasirt, P. & Suwanvitaya, P. Development of high volume rice husk ash alumino silicate composites. Int J Miner Metall Mater 17, 654–659 (2010). https://doi.org/10.1007/s12613-010-0370-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-010-0370-0

Keywords

Navigation