Skip to main content
Log in

Numerical simulation of macrosegregation in steel ingots using a two-phase model

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on the system scale with microscopic relations for grain nucleation and growth. Then the model is used to simulate the solidification of a benchmark industrial 3.3-t steel ingot. Simulations are performed to investigate the effects of grain motion and pipe shrinkage formation on the final macrosegregation pattern. The model predictions are compared with experimental data and numerical results from literatures. It is demonstrated that the model is able to express the overall macrosegregation patterns in the ingot. Furthermore, the results show that it is essential to consider the motion of equiaxed grains and the formation of pipe shrinkage in modelling. Several issues for future model improvements are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Specific heat capacity, J·kg−1·K−1

C :

Concentration of carbon, wt%

d s :

Grain diameter, m

D :

Mass diffusivity, m2·s−1

g :

Volume fraction

g c :

Grain packing limit

g :

Gravity vector, m·s−2

k p :

Partition ratio

k :

Thermal conductivity, W·m−1·K−1

L :

Latent heat, J·kg−1

m l :

Liquidus slope, K·wt%−1

N :

Grain production rate, m−3·s−1

n :

Grain density, m−3

n max :

Maximum grain density, m−3

p :

Pressure, N·m−2

Re :

Reynolds number

S v :

Interfacial area concentration, m−1

t :

Time, s

T :

Temperature, °C

T m :

Melting point of pure iron, °C

u :

Velocity vector, m·s−1

β :

Drag coefficient, kg·m−3·s−1

β sl :

Solidification volume shrinkage

β C :

Solutal expansion coefficient, wt%−1

β T :

Thermal expansion coefficient, K−1

Γ :

Interfacial phase change rate, kg·m−3·s−1

δ :

Solute diffusion length, m

ΔT :

Undercooling, K

ΔT N :

Undercooling for maximum grain production rate, K

ΔT σ :

Gaussian distribution width of the nucleation law, K

μ :

Dynamic viscosity, kg·m−1·s−1

ρ :

Density, kg·m−3.

0:

Initial

b:

Buoyancy

l:

Liquid phase

ref:

Reference

s:

Solid phase

*:

Equilibrium at the solid-liquid interface.

References

  1. M.C. Flemings, Principles of control of soundness and homogeneity of large ingots, Scand. J. Metall., 5(1976), p.1.

    CAS  Google Scholar 

  2. M.C. Flemings, Our understanding of macrosegregation: Past and present, ISIJ Int., 40(2000), No.9, p.833.

    Article  CAS  Google Scholar 

  3. C. Beckermann, Modelling of macrosegregation: Applications and future needs, Int. Mater. Rev., 47(2002), No.5, p.243.

    Article  CAS  Google Scholar 

  4. G. Lesoult, Macrosegregation in steel strands and ingots: Characterisation, formation and consequences, Mater. Sci. Eng. A, 413–414(2005), p.19.

    Google Scholar 

  5. J. Ni and C. Beckermann, A volume-averaged two-phase model for transport phenomena during solidification, Metall. Trans. B, 22(1991), p.349.

    Article  Google Scholar 

  6. C.Y. Wang and C. Beckermann, Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling, Metall. Mater. Trans. A, 27(1996), p.2754.

    Article  Google Scholar 

  7. A. Ludwig and M. Wu, Modeling of globular equiaxed solidification with a two-phase approach, Metall. Mater. Trans. A, 33(2002), p.3673.

    Article  Google Scholar 

  8. M. Wu and A. Ludwig, A three-phase model for mixed columnar-equiaxed solidification, Metall. Mater. Trans. A, 37(2006), p.1613.

    Article  Google Scholar 

  9. M. Wu and A. Ludwig, Modeling equiaxed solidification with melt convection and grain sedimentation: I. Model description, Acta Mater., 57(2009), p.5621.

    Article  CAS  Google Scholar 

  10. M. Wu, A. Fjeld, and A. Ludwig, Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation: Part I. Model description, Comput. Mater. Sci., 50(2010), p.32.

    Article  CAS  Google Scholar 

  11. H. Combeau, M. Založnik, S. Hans, and P.E. Richy, Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains, Metall. Mater. Trans. B, 40(2009), p.289.

    Article  Google Scholar 

  12. M. Založnik and H. Combeau, An operator splitting scheme for coupling macroscopic transport and grain growth in a two-phase multiscale solidification model: Part I. Model and solution scheme, Comput. Mater. Sci., 48(2010), p.1.

    Article  Google Scholar 

  13. R. Pardeshi, P. Dutta, and A.K. Singh, Modeling of convection and macrosegregation through appropriate consideration of multiphase/multiscale phenomena during alloy solidification, Ind. Eng. Chem. Res., 48(2009), No.19, p.8789.

    Article  CAS  Google Scholar 

  14. B.C. Liu, Q.Y. Xu, T. Jing, H.F. Shen, and Z.Q. Han, Advances in multi-scale modeling of solidification and casting processes, JOM, 63(2011), No.4, p.19.

    Article  Google Scholar 

  15. H. Combeau, A. Kumar, and M. Založnik, Modeling of equiaxed grain evolution and macrosegregations development in steel ingots, Trans. Indian Inst. Met., 62(2009), p.285.

    Article  CAS  Google Scholar 

  16. D. Gidaspow, Multiphase Flow and Fluidization, Continuum and Kinetic Theory Description, Academic Press, New York, 1994, p.35.

    Google Scholar 

  17. J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, New York, 2002, p.101.

    Book  Google Scholar 

  18. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980, p.113.

    Google Scholar 

  19. H. Karema and S. Lo, Efficiency of interphase coupling algorithms in fluidized bed conditions, Comput. Fluids, 28(1999), p.323.

    Article  CAS  Google Scholar 

  20. B.C. Liu, H.F. Shen, and W.Z. Li, Progress in numerical simulation of solidification process of shaped casting, J. Mater. Sci. Technol., 11(1995), p.313.

    Article  CAS  Google Scholar 

  21. J.P. Gu and C. Beckermann, Simulation of convection and macrosegregation in a large steel ingot, Metall. Mater. Trans. A, 30(1999), p.1357.

    Article  Google Scholar 

  22. W.S. Li, H.F. Shen, and B.C. Liu, Three-dimensional simulation of thermosolutal convection and macrosegregation in steel ingots, Steel Res. Int., 81(2010), No.11, p.994.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-fa Shen.

Additional information

This work was financially supported by the National Science and Technology Major Project of China (No.2011ZX04014-052) and the National Basic Research Priorities Program of China (No.2011CB012900).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ws., Shen, Hf. & Liu, Bc. Numerical simulation of macrosegregation in steel ingots using a two-phase model. Int J Miner Metall Mater 19, 787–794 (2012). https://doi.org/10.1007/s12613-012-0629-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0629-8

Keywords

Navigation