Skip to main content
Log in

Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. Al/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Torralba, C.E. da Costa, and F. Velasco, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol., 133(2003), No.1–2, p.203.

    Article  CAS  Google Scholar 

  2. C.H. Liu, Structure and properties of boron carbide with aluminum incorporation, Mater. Sci. Eng. B, 72(2000), No.1, p.23.

    Article  Google Scholar 

  3. J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, and J.M. Torralba, The effects of mechanical alloying on the compressibility of aluminium matrix composite powder, Mater. Sci. Eng. A, 355(2003), No.1–2, p.50.

    Google Scholar 

  4. K.M. Shorowordi, A.S.M.A. Haseeb, and J.P. Celis, Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear, 261(2006), No.5–6, p.634.

    Article  CAS  Google Scholar 

  5. T.R. Chapman, D.E. Niesz, R.T. Fox, and T. Fawcett, Wear-resistant aluminum-boron-carbide cermets for automotive brake applications, Wear, 236(1999), No.1–2, p.81.

    Article  CAS  Google Scholar 

  6. M.D. Bermúdez, F.J. Carrión, P. Iglesias, G. Martínez-Nicolás, E.J. Herrera, and J.A. Rodríguez, Influence of milling conditions on the wear resistance of mechanically alloyed aluminium, Wear, 258(2005), No.5–6, p.906.

    Article  Google Scholar 

  7. T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Processing techniques for particulate reinforced metal matrix composites, J. Mater. Sci., 26(1991), No.22, p.5965.

    Article  CAS  Google Scholar 

  8. H.S. Lee, J.S. Yeo, S.H. Hong, D.J. Yoon, and K.H. Na, The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air-conditioner compressor pistons, J. Mater. Process. Technol., 113(2001), No.1–3, p.202.

    Article  CAS  Google Scholar 

  9. G. Ganesan, K. Raghukandan, R. Karthikeyan, and B.C. Pai, Development of processing maps for 6061 Al/15% SiCp composite material, Mater. Sci. Eng. A, 369(2004), No.1–2, p.230.

    Google Scholar 

  10. M. Alizadeh and M.H. Paydar, Fabrication of nanostructure Al/SiCP composite by accumulative roll-bonding (ARB) process, J. Alloys Compd., 492(2010), No.1–2, p.231.

    Article  CAS  Google Scholar 

  11. M. Alizadeh and M.H. Paydar, Fabrication of Al/SiCP composite strips by repeated roll-bonding (RRB) process, J. Alloys Compd., 477(2009), No.1–2, p.811.

    Article  CAS  Google Scholar 

  12. M. Alizadeh, Processing of Al/B4C composites by cross-roll accumulative roll bonding, Mater. Lett., 64(2010), No.23, p.2641.

    Article  CAS  Google Scholar 

  13. A. Yazdani and E. Salahinejad, Evolution of reinforcement distribution in Al-B4C composites during accumulative roll bonding, Mater. Des., 32(2011), No.6, p.3137.

    Article  CAS  Google Scholar 

  14. A. Yazdani, E. Salahinejad, J. Moradgholi, and M. Hosseini, A new consideration on reinforcement distribution in the different planes of nanostructured metal matrix composite sheets prepared by accumulative roll bonding (ARB), J Alloys Compd, 509(2011) No.39, p.9562.

    Article  CAS  Google Scholar 

  15. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, Effect of particle size on microstructure and mechanical properties of composites produced by ARB process, Mater. Sci. Eng. A, 528(2011), No.4–5, p.2143.

    Google Scholar 

  16. H. Utsunomiya, K. Tanda, Y. Saito, T. Sakai, and N. Tsuji, Effects of lubrication on accumulative roll-bonding (ARB) of aluminum, J. Jpn. Soc. Technol. Plast., 40(1999), No.467, p.1187.

    CAS  Google Scholar 

  17. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai, Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process, Scripta Mater., 46(2002), No.4, p.281.

    Article  CAS  Google Scholar 

  18. Q. Liu and N. Hansen, Macroscopic and microscopic subdivision of a cold-rolled aluminium single crystal of cubic orientation, Proc. R. Soc. A, 454(1998), No.1978, p.2555.

    Article  CAS  Google Scholar 

  19. M. Alizadeh, Comparison of nanostructured Al/B4C composite produced by ARB and Al/B4C composite produced by RRB process, Mater. Sci. Eng. A, 528(2010), No.2, p.578.

    Article  Google Scholar 

  20. C. Lu, K. Tieu, and D. Wexler, Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles, J. Mater. Process. Technol., 209(2009), No.10, p.4830.

    Article  CAS  Google Scholar 

  21. M. Alizadeh and M.H. Paydar, Study on the effect of presence of TiH2 particles on the roll bonding behavior of aluminum alloy strips, Mater. Des., 30(2009), No.1, p.82.

    Article  CAS  Google Scholar 

  22. X. Huang, N. Kamikawa, and N. Hansen, Strengthening mechanisms in nanostructured aluminum, Mater. Sci. Eng. A, 483–484(2008), No.1–2, p.102.

    Google Scholar 

  23. N. Hansen, X. Huang, R. Ueji, and N. Tsuji, Structure and strength after large strain deformation, Mater. Sci. Eng. A, 387–389(2004), No.1–2, p.191.

    Google Scholar 

  24. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., 39(1998), No.9, p.1221.

    Article  CAS  Google Scholar 

  25. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra- high straining process for bulk materials: development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No.2, p.579.

    Article  CAS  Google Scholar 

  26. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scripta Mater., 47(2002), No.12, p.893.

    Article  CAS  Google Scholar 

  27. C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, and M. Göken, Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement, Scripta Mater., 64(2011), No.3, p.245.

    Article  CAS  Google Scholar 

  28. H. Sekine and R. Chen, A combined microstructure strengthening analysis of SiCp/Al metal matrix composites, Composites, 26(1995), No.3, p.183.

    Article  CAS  Google Scholar 

  29. J.C. Lee and K.N. Subramanian, Effect of cold rolling on the tensile properties of (Al2O3)p/Al composites, Mater. Sci. Eng. A, 159(1992), No.1, p.43.

    Article  Google Scholar 

  30. U. Cöcen and K. Önel, Ductility and strength of extruded SiCp/aluminium-alloy composites, Compos. Sci. Technol., 62(2002), No.2, p.275.

    Article  Google Scholar 

  31. Z. Wang, T.K. Chen, and D.J. Lloyd, Stress distribution in particulate-reinforced metal-matrix composites subjected to external load, Metall. Trans. A, 24(1993), No.1, p.197.

    Google Scholar 

  32. D.J. Lloyd, Aspects of fracture in particulate reinforced metal matrix composites, Acta Metall. Mater., 39(1991), No.1, p.59.

    Article  CAS  Google Scholar 

  33. Z.R. Wang and R.J. Zhang, Mechanical behavior of cast particulate SiC/Al (A356) metal matrix composites, Metall. Trans. A, 22(1991), No.7, p.1585.

    Article  Google Scholar 

  34. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding, Mater. Sci. Eng. A, 325(2002), No.1–2, p.228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Salahinejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaghtin, A.H., Salahinejad, E. & Khosravifard, A. Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations. Int J Miner Metall Mater 19, 951–956 (2012). https://doi.org/10.1007/s12613-012-0653-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0653-8

Keywords

Navigation