Skip to main content
Log in

Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The influence of oxygen content on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr (at%) alloy in as-cast and cold-rolled states was investigated systematically in this paper. It is found that the alloy containing oxygen element is only composed of a single β phase, while the alloy without oxygen element consisted of β and α″ phases. Although the grain size becomes larger, the elastic deformation ratio, strength, and hardness of the alloy are all increased with an increase of oxygen content. The as-cast alloy has excellent plastic deformation ability, but the cold-rolled alloy containing oxygen element exhibits brittle characteristics. A conclusion can be drawn that oxygen element can stabilize β phase, inhibit the phase transformation from β to α″, and furthermore help to increase the strength and elastic deformation ability of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ankem and C.A. Greene, Recent developments in microstructure/property relationships of beta titanium alloys, Mater. Sci. Eng. A, 263(1999), p.127.

    Article  Google Scholar 

  2. T. Kasuga, M. Nogami, M. Niinomi, and T. Hattori, Bioactive calcium phosphate invert glass-ceramic coating on β-type Ti-29Nb-13Ta-4.6Zr alloy, Biomaterials, 24(2003), p.283.

    Article  CAS  Google Scholar 

  3. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater., 55(2006), p.477.

    Article  CAS  Google Scholar 

  4. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Multifunctional alloys obtained via dislocation-free plastic deformation mechanism, Science, 300(2003), p.464.

    Article  CAS  Google Scholar 

  5. T. Furuta, S. Kuramoto, J.H. Hwang, K. Nishino, and T. Saito, Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys, Mater. Trans., 46(2005), p.3001.

    Article  CAS  Google Scholar 

  6. S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, and T. Saito, Elastic properties of Gum Metal, Mater. Sci. Eng. A, 442(2006), p.454.

    Article  Google Scholar 

  7. M.Y. Gutkin, T. Ishizaki, S. Kuramoto, and I.A. Oviďko, Nanodisturbances in deformed Gum Metal, Acta Mater., 54(2006), p.2489.

    Article  CAS  Google Scholar 

  8. S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, and T. Saito, Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O Alloy, Metall. Mater. Trans. A, 37(2006), p.657.

    Article  Google Scholar 

  9. M.Y. Gutkin, T. Ishizaki, S. Kuramoto, I.A. Oviďko, and N.V. Skiba, Giant fault in deformed Gum Metal, Int. J. Plast., 24(2008), p.1333.

    Article  CAS  Google Scholar 

  10. E. Withey, M. Jin, A. Minor, S. Kuramoto, D.C. Chrzan, and J.W. Morrism Jr, The deformation of “Gum Metal” in nanoindentation, Mater. Sci. Eng. A, 493(2008), p.26.

    Article  Google Scholar 

  11. T. Yano, Y. Murakami, D. Shindo, and S. Kuramoto, Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy, Acta Mater., 57(2009), p.628.

    Article  CAS  Google Scholar 

  12. J.W. Morris Jr, Y. Hanlumyuang, M. Sherburne, E. Withey, D.C. Chrzan, S. Kuramoto, Y. Hayashi, and M. Hara, Anomalous transformation-induced deformation in 〈110〉 textured Gum Metal, Acta Mater., 58(2010), p.3271.

    Article  CAS  Google Scholar 

  13. S. Kuramoto, T. Furuta, J.H. Hwang, et al., Ti-2003 science and technology, [in] Proceedings of 10th World Conference on Titanium, Hamburg, 2004, p.1527.

  14. Q.Q Wei, L.Q. Wang, Y.F. Fu, J.N. Qin, W.J. Lu, and D. Zhang, Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy, Mater. Des., 32(2011), p.2934.

    Article  CAS  Google Scholar 

  15. F.Q. Hou, S.J. Li, Y.L. Hao, and R. Yang, Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys, Scripta Mater., 63(2010), p.54.

    Article  CAS  Google Scholar 

  16. J.I. Qazi, B. Marquardt, L.F. Allard, and H.J. Rack, Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06–0.68)O alloys, Mater. Sci. Eng. C, 25(2005), p.389.

    Article  Google Scholar 

  17. M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Lattice modulation and superelasticity in oxygen-added β-Ti alloys, Acta Mater., 59(2011), p.6208.

    Article  CAS  Google Scholar 

  18. Q.S. Zhang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu, Compressive fracture of Zr55Al10Ni5Cu30 bulk amorphous alloy at high temperature, Mater. Sci. Eng. A, 360(2003), p.280.

    Article  Google Scholar 

  19. Z.Q. Liu, R. Li, H. Wang, and T. Zhang, Nitrogen-doping effect on glass formation and primary phase selection in Cu-Zr-Al alloys, J. Alloys Compd., 509(2011), p.5033.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-huang Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Hp., Xu, Hx., Su, Wh. et al. Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy. Int J Miner Metall Mater 19, 1128–1133 (2012). https://doi.org/10.1007/s12613-012-0681-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0681-4

Keywords

Navigation