Skip to main content
Log in

Spark plasma and microwave sintering of Al6061 and Al2124 alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Despite the importance of aluminum alloys as candidate materials for applications in aerospace and automotive industries, very little work has been published on spark plasma and microwave processing of aluminum alloys. In the present work, the possibility was explored to process Al2124 and Al6061 alloys by spark plasma and microwave sintering techniques, and the microstructures and properties were compared. The alloys were sintered for 20 min at 400, 450, and 500°C. It is found that compared to microwave sintering, spark plasma sintering is an effective way to obtain homogenous, dense, and hard alloys. Fully dense (100%) Al6061 and Al2124 alloys were obtained by spark plasma sintering for 20 min at 450 and 500°C, respectively. Maximum relative densities were achieved for Al6061 (92.52%) and Al2124 (93.52%) alloys by microwave sintering at 500°C for 20 min. The Vickers microhardness of spark plasma sintered samples increases with the increase of sintering temperature from 400 to 500°C, and reaches the values of Hv 70.16 and Hv 117.10 for Al6061 and Al2124 alloys, respectively. For microwave sintered samples, the microhardness increases with the increase of sintering temperature from 400 to 450°C, and then decreases with the further increase of sintering temperature to 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Xu, S.S. Jia, and Z.Y. Cao, Synthesis of Al-Mn-Ce alloy by the spark plasma sintering, Mater. Charact., 54(2005), No. 4–5, p. 394.

    Article  Google Scholar 

  2. X.L. Shi, H. Yang, and S. Wang, Spark plasma sintering of W-15Cu alloy from ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology, Mater. Charact., 60(2009), No. 2, p. 133.

    Article  CAS  Google Scholar 

  3. M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd., 494(2010), No. 1–2, p. 175.

    Article  CAS  Google Scholar 

  4. D.E. Clark, D.C. Folz, and J.K. West, Processing materials with microwave energy, Mater. Sci. Eng.A, 287(2000), No. 2, p. 153.

    Article  Google Scholar 

  5. E.T. Thostenson and T.W. Chou, Microwave processing: fundamentals and applications, Compos. Part A, 30(1999), No. 9, p. 1055.

    Article  Google Scholar 

  6. C. Leonelli, P. Veronesi, L. Denti, A. Gatto, and L. Iuliano, Microwave assisted sintering of green metal parts, J. Mater. Process. Technol., 205(2008), No. 1–3, p. 489.

    Article  CAS  Google Scholar 

  7. J.W. Walkiewicz, G. Kazonich, and S.L. McGill, Microwave heating characteristics of selected minerals and compounds, Miner. Metall. Process., 5(1988), No. 1, p. 39.

    CAS  Google Scholar 

  8. K. Matsugi, N. Ishibashi, T. Hatayama, and O. Yanagisawa, Microstructure of spark sintered titanium-aluminide compacts, Intermetallics, 4(1996), No. 6, p. 457.

    Article  CAS  Google Scholar 

  9. H.B. Feng, Y. Zhou, D.C. Jia, and Q.C. Meng, Rapid synthesis of Ti alloy with B addition by spark plasma sintering, Mater. Sci. Eng. A, 390(2005), No. 1–2, p. 344.

    Google Scholar 

  10. C. Shearwood, Y.Q. Fu, L. Yu, and K.A. Khor, Spark plasma sintering of TiNi nano-powder, Scripta Mater., 52(2005), No. 6, p. 455.

    Article  CAS  Google Scholar 

  11. X. Lu, X.B. He, B. Zhang, L. Zhang, X.H. Qu, and Z.X. Guo, Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy, Intermetallics, 17(2009), No. 10, p. 840.

    Article  CAS  Google Scholar 

  12. A. Couret, G. Molénat, J. Galy, and M. Thomas, Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering, Intermetallics, 16(2008), No. 9, p. 1134.

    Article  CAS  Google Scholar 

  13. S.L. Xiao, J. Tian, L.J. Xu, Y.Y. Chen, H.B. Yu, and J.C. Han, Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering, Trans. Nonferros Met. Soc. China, 19(2009), No. 6, p. 1423.

    Article  CAS  Google Scholar 

  14. T. Murakami, A. Kitahara, Y. Koga, M. Kawahara, H. Inui, and M. Yamaguchi, Microstructure of Nb-Al powders consolidated by spark plasma sintering process, Mater. Sci. Eng. A, 240(1997), No. 1–2, p. 672.

    Google Scholar 

  15. T. Murakamia, C.N. Xu, A. Kitahara, M. Kawahara, Y. Takahashi, H. Inui, and M. Yamaguchi, Microstructure, mechanical properties and oxidation behavior of powder compacts of the Nb-Si-B system prepared by spark plasma sintering, Intermetallics, 7(1999), No. 9, p. 1043.

    Article  Google Scholar 

  16. L.L. Ye, Z.G. Liu, K. Raviprasad, M.X. Quan, M. Umemoto, and Z.Q. Hu, Consolidation of MA amorphous NiTi powders by spark plasma sintering, Mater. Sci. Eng. A, 241(1998), No. 1–2, p. 290.

    Google Scholar 

  17. C.K. Kim, H.S. Lee, S.Y. Shin, J.C. Lee, D.H. Kim, and S. Lee, Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering, Mater. Sci. Eng. A, 406(2005), No. 1–2, p. 293.

    Google Scholar 

  18. Z.H. Zhang, F.C. Wang, S.K. Lee, Y. Liu, J.W. Cheng, and Y. Liang, Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process, Mater. Sci. Eng. A, 523(2009), p. 134.

    Article  Google Scholar 

  19. C.C. Jia, Q. He, J. Meng, and L.N. Guo, Influence of mechanical alloying time on the properties of Fe3Al intermetallics prepared by spark plasma sintering, J. Univ. Sci. Technol. Beijing, 14(2007), No. 4, p. 331.

    Article  CAS  Google Scholar 

  20. T.B. Holland, I.A. Ovidko, H. Wang, and A.K. Mukherjee, Elevated temperature deformation behavior of spark plasma sintered nanometric nickel with varied grain size distributions, Mater. Sci. Eng. A, 528(2010), p. 663.

    Article  Google Scholar 

  21. R. Ohser-Wiedemann, U. Martin, H.J. Seifert, and A. Müller, Densification behavior of pure molybdenum powder by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 28(2010), No. 4, p. 550.

    Article  CAS  Google Scholar 

  22. T.T. Sasaki, T. Mukai, and K. Hono, A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering, Scripta Mater., 57(2007), No. 3, p. 189.

    Article  CAS  Google Scholar 

  23. M. Kubota, Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering, J. Alloys Compd., 434–435(2007), p. 294.

    Article  Google Scholar 

  24. T.T. Sasaki, T. Ohkubo, and K. Hono, Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering, Acta Mater., 57(2009), p. 3529.

    Article  CAS  Google Scholar 

  25. H.B. Chen, K. Tao, B. Yang, and J.S. Zhang, Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering, Trans. Nonferros Met. Soc. China, 19(2009), p. 1110.

    Article  CAS  Google Scholar 

  26. J.K. Rana, D. Sivaprahasam, K. Seetharama Raju, and V. Subramanya Sarma, Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering, Mater. Sci. Eng. A, 527(2009), p. 292.

    Article  Google Scholar 

  27. R. Roy, D.K. Arawal, and J. Cheng, Process for Sintering Powder Metal Components, US Patent, Appl.6183689 B1, 2001.

  28. R.M. Anklekar, D.K Agrawal, and R. Roy, Microwave sintering and mechanical properties of PM copper steel, Powder Metall., 44 (2001), No. 4, p. 355.

    Article  CAS  Google Scholar 

  29. R.M. Anklekar, K. Bauer, D.K. Agrawal, and R. Roy, Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts, Powder Metall., 48(2005), No. 1, p. 39.

    Article  CAS  Google Scholar 

  30. K. Saitou, Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders, Scripta Mater., 54(2006), No. 5, p. 875.

    Article  CAS  Google Scholar 

  31. J. Mascarenhas, T. Marcelo, A. Inverno, J. Castanho, and T. Vieira, Microwaves show off their advantages in efficient sintering, Met. Powder Rep., 63(2008), No. 11, p. 12.

    Article  Google Scholar 

  32. G. Prabhu, A. Chakraborty, and B. Sarma, Microwave sintering of tungsten, Int. J. Refract. Met. Hard Mater., 27(2009), No. 3, p. 545.

    Article  CAS  Google Scholar 

  33. A. Mondal, D. Agrawal, and A. Upadhyaya, Microwave heating of pure copper powder with varying particle size and porosity, J. Microw. Power Electromagn. Energy, 43(2009), No. 1, p. 5.

    Google Scholar 

  34. C.S. Zhou, J.H. Yi, S.D. Luo, Y.D. Peng, L.Y. Li, and G. Chen, Effect of heating rate on the microwave sintered WNi-Fe heavy alloys, J. Alloys Compd., 482(2009), No. 1–2, p. L6.

    Article  CAS  Google Scholar 

  35. D. Demirskyi, D. Agrawal, and A. Ragulya, Neck growth kinetics during microwave sintering of nickel powder, J. Alloys Compd., 509(2011), p. 1790.

    Article  CAS  Google Scholar 

  36. S. Nawathe, W.L.E. Wong, and M. Guptac, Using microwaves to synthesize pure aluminum and metastable Al/Cu nanocomposites with superior properties, J. Mater. Process. Technol., 209(2009), p. 4890.

    Article  CAS  Google Scholar 

  37. M. Gupta and W.L.E. Wong, Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering, Scripta Mater., 52(2005), p. 479.

    Article  CAS  Google Scholar 

  38. S.K. Thakur, T.S. Kong, and M. Gupta, Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composites, Mater. Sci. Eng. A, 452–453(2007), p. 61.

    Google Scholar 

  39. N. Saheb, T. Laoui, A.R. Daud, R. Yahaya, and S. Radiman, Microstructure and hardness behaviours of Ticontaining Al-Si alloys, Philos. Mag. A, 82(2002), No. 4, p. 803.

    Article  CAS  Google Scholar 

  40. R.M. German, Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, 1994.

    Google Scholar 

  41. R.M. German, Sintering Theory and Practice, John Wiley, New York, 1996.

    Google Scholar 

  42. R. Orr`u, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R, 63(2009), No. 4–6, p. 127.

    Article  Google Scholar 

  43. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Challenges and advances in nanocomposite processing techniques, Mater. Sci. Eng. R, 54(2006), p. 121.

    Article  Google Scholar 

  44. J. Adachi, K. Kurosaki, M. Uno, and S. Yamanaka, Porosity influence on the mechanical properties of polycrystalline zirconium nitride ceramics. J. Nucl. Mater., 358(2006), No. 2–3, p. 106.

    Article  CAS  Google Scholar 

  45. X. Jin, L. Gao, and J. Sun, Preparation of nanostructured Cr1−x TixN ceramics by spark plasma sintering and their properties, Acta Mater., 54(2006), No. 15, p. 4035.

    Article  CAS  Google Scholar 

  46. Y.H. Kim, T. Sekino, T. Kusunose, T. Nakayama, K. Niihara, and H. Kawaoka, Electrical and mechanical properties of K, Ca ionic-conductive silicon nitride ceramics, Ceram. Trans., 165(2005), p. 31.

    CAS  Google Scholar 

  47. A.C. Metaxas and R.J. Meredith, Industrial Microwave Heating, Peter Pregrinus, Ltd., London, 1983.

    Google Scholar 

  48. M. Gupta and W.L.E. Wong, Microwaves and Metals, John Wiley & Sons, Singapore, 2007.

    Book  Google Scholar 

  49. S. Nouari and A.R. Daud, Effect of Ti and Sb additions on Al-10.5wt% Si alloy, J. Mater. Sci. Technol., 8(2000), No. 4, p. 209.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouari Saheb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saheb, N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater 20, 152–159 (2013). https://doi.org/10.1007/s12613-013-0707-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0707-6

Keywords

Navigation