Skip to main content

Advertisement

Log in

Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

High entropy alloys with the composition of FeCoNiAl0.2Si0.2 were prepared by arc melting and induction melting, denoted by A1 and A2, respectively. The samples prepared by these two techniques have a face-centered cubic (FCC) phase structure and a typical dendrite morphology. The tensile yield strength and maximum strength of A2 samples are about 280 and 632 MPa, respectively. Moreover, the elongation can reach 41.7%. These two alloys prepared by the different methods possess the similar magnetic properties. The saturation magnetization and coercivity can reach 1.151 T and 1400 A/m for Al samples and 1.015 T and 1431 A/m for A2 samples, respectively. Phases in A2 samples do not change, which are heat treated at different temperatures, then quenched in water. Only the sample, which is heat treated at 600°C for 3 h and then furnace cooled, has a new phase precipitated. Besides, the coercivity decreases obviously at this temperature. Cold rolling and the subsequent heat treatment cannot improve the magnetic properties effectively. However, cold rolling plays an important role in improving the strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    Article  CAS  Google Scholar 

  2. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) highentropy alloys, J. Alloys Compd., 488(2009), p. 57

    Article  CAS  Google Scholar 

  3. Y.J. Zhou, Y. Zhang, T.N. Kim, and G.L. Chen, Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties, Mater. Lett., 62(2008), p. 2673.

    Article  CAS  Google Scholar 

  4. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloys Compd., 509(2011), p. 1607.

    Article  CAS  Google Scholar 

  5. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509(2011), p. 6043.

    Article  CAS  Google Scholar 

  6. Y.P. Wang, B.S. Li, and H.Z. Fu, Solid solution or intermetallics in a high-entropy alloy, Adv. Eng. Mater., 11(2009), p. 641.

    Article  CAS  Google Scholar 

  7. Y. Zhang, T.T. Zuo, W.B. Liao, and P.K. Liaw, Processing and properties of high-entropy alloys and micro- and nano-wires, ECS Trans., 41(2012), No. 30, p. 49.

    Article  Google Scholar 

  8. G.J. Wang, B.Q. Xiong, Y.A. Zhang, Z.H. Li, and P.Y. Li, Microstructural characterization of as-cast and homogenized 2D70 aluminum alloy, Int. J. Miner., Metall. Mater., 16(2009), p. 427.

    Article  Google Scholar 

  9. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, Highentropy alloys: a new era of exploitation, Mater. Sci. Forum, 560(2007), p. 1.

    Article  CAS  Google Scholar 

  10. J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater., 31(2006), p. 633.

    Article  CAS  Google Scholar 

  11. L.M. Martyushev and V.D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Phys. Rep., 426(2006), p. 1.

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater.,10(2008), p. 534.

    Article  CAS  Google Scholar 

  13. X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), p. 233.

    Article  CAS  Google Scholar 

  14. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys.,109(2011), art. No. 103505.

    Google Scholar 

  15. Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T.S. Chin, and S.K. Chen, Amorphization of equimolar alloys with HCP elements during mechanical alloying, J. Alloys Compd., 506(2010), p. 210.

    Article  CAS  Google Scholar 

  16. V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Mater. Chem. Phys., 117(2009), p. 142.

    Article  CAS  Google Scholar 

  17. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying, Metall. Mater. Trans. A, 41(2010), p. 2703.

    Article  Google Scholar 

  18. F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies, Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Eng. Mater. Technol., 131(2009), No. 3, part. No. 034501.

    Google Scholar 

  19. C.M. Lin and H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19(2011), p. 288.

    Article  CAS  Google Scholar 

  20. Y.C. Lin and Y.H. Cho, Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis, Surf. Coat. Technol., 202(2008), p. 4666.

    Article  CAS  Google Scholar 

  21. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), p. 1758.

    Article  CAS  Google Scholar 

  22. T.T. Shun and Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd., 479(2009), No. 1-2, p. 157.

    Article  CAS  Google Scholar 

  23. C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 486(2009), p. 427.

    Article  CAS  Google Scholar 

  24. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures, Mater. Sci. Forum, 688(2011), p. 419.

    Article  CAS  Google Scholar 

  25. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, Highentropy alloys with high saturation magnetization, electrical resistivity, and malleability, Sci. Rep., 3(2013), p. 1455.

    Google Scholar 

  26. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B, Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698.

    Article  CAS  Google Scholar 

  27. Y. Zhang, X.F. Wang, G.L. Chen, and Y. Qiao, Effect of Ti on the microstructure and properties of CoCrCuFeNiTix high-entropy alloys, Ann. Chim. Sci. Mater., 31(2006), No. 6, p. 699.

    Article  CAS  Google Scholar 

  28. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15(2007), p. 357.

    Article  CAS  Google Scholar 

  29. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy, J. Alloys Compd., 502(2010), p. 295.

    Article  CAS  Google Scholar 

  30. C. Ng, S. Guo, J.H. Luan, S.Q. Shi, and C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics, 31(2012), p. 165.

    Article  Google Scholar 

  31. D.L. Shu, J.B. Chen, and Y. Feng, Mechanical Properties of Engineering Materials, China Machine Press, Beijing, 2003, p. 43.

    Google Scholar 

  32. G.F. Sun and W.J. Qiang, Magnetic Materials, Chemical Industry Press, Beijing, 2007, p. 2.

    Google Scholar 

  33. C.J. Qiu, Y.H. Wang, and W. Qu, Physical Properties of Materials, Harbin Institute of Technology Press, Harbin, 2009, p. 120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, Tt., Ren, Sb., Liaw, P.K. et al. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int J Miner Metall Mater 20, 549–555 (2013). https://doi.org/10.1007/s12613-013-0764-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0764-x

Keywords

Navigation